selektor .. 606

tup-tun tester .. 608
This tester gives an instant check of the "general health" of a transistor, as well as its compliance with the minimum TUP or TUN specification, by the very simple procedure of plugging it into test sockets and interpreting the messages from two light-emitting diodes. It is also possible to check diodes for excessive capacity or leakage.

tup-tun-dug-dus 615

interference suppression in cars 616
Electrical interference generated by cars can be a source of annoyance, not only to the car occupants, but also to users of other electronic equipment external to the vehicle. This article discusses some of the main common causes of interference and their cure.

thief suppression in cars 618
Thefts of cars, or accessories and/or other articles in them, are becoming more and more common. By the same token, anti-theft alarms for cars are becoming more and more of a necessity.

string sound ... 622

h-l logic tester .. 623
This is a TTL logic probe which, instead of the usual LED to indicate the logic states, uses a seven-segment Mintron or LED display to indicate 'H' for a high or '1' state and 'L' for a low or '0' state.

tap preamp (2) .. 624
The first part of this article discussed an audio preamplifier and control unit operated entirely by TAP's and dealt with the design of the TAP and the electronic switching controlled by the TAP. This month's article deals with the application of these circuits to a complete touch-controlled preamp with the facilities already described.

supplies for cars 632
In order to function effectively, electronic equipment used in cars must have an appropriate power supply, which must also suppress interference appearing on the battery voltage from the car electrical systems.

mos-clock (2) ... 634
The mos-clock described in Elektor 1 has been extended with a crystal time base and an emergency supply. Both are mounted on one printed circuit board.

what is cybernetics? - H. Ritz 637

beetle - Arbeitsgemeinschaft der Hauptschule Rossbach 638
Beetles, tortoises and the like have often served as models for cybernetic machines which must also have a reasonable appearance. The beetle described in this article can 'see, hear and feel' and reacts to information in the form of sounds and movements. The animal has a memory and can get tired.

the moth - M. Keul, H. Lühr 644
This is a design for a simple cybernetic model, based on an electric toy car, that will be attracted towards a light source like a moth, negotiating obstacles in its path.

micro-squeaker .. 645

quadro in practice 646
In response to an earlier article on quadrophony ('Quadro 1-2-3-4 ...', December 1974), we received many requests for the complete circuit of a quadrophony decoder. Nippon Columbia has now put such a design at our disposal, so that we can fulfill the wishes of many of our readers.

elektror shorthand 660

missing link ... 660

sniff race control - E. Waschkowski 660
tup tun tester

This tester gives an instant check of the ‘general health’ of a transistor, as well as its compliance with the minimum TUP or TUN specification, by the very simple procedure of plugging it into test sockets and interpreting the messages from two light-emitting diodes. It is also possible to check diodes for excessive capacity or leakage.

The principle of operation is simple and no preliminary calibration is needed - only the use of transistors and diodes known to be ‘good’ and resistors within the specified tolerance.

An astable multivibrator generates a square wave at a frequency of about 2 kHz, and this oscillation is turned on and off by another multivibrator at about 2 Hz. The collector-emitter path of the transistor under test (or the anode-cathode path of the diode) is connected in series with another transistor across the supply rails, and the intermittent 2 kHz square wave is fed in antiphase to the bases of each of the two transistors. Figure 1 shows a block diagram of the arrangement, from which a lot of information about the semiconductor under test can be deduced from the ‘behaviour’, voltage-wise, of the junction between the two semiconductors. This information can be displayed with the aid of only two light-emitting diodes (LEDs).

Circuit Description

Figure 2 shows the complete circuit, which has been divided into three sections to avoid confusion. Transistors T5 and T6 in figure 2a form an astable multivibrator which runs at about 2 kHz. T2 and T3 form another multivibrator which runs at a much lower speed, about 2 Hz, and turns the ‘fast’ (2 kHz) oscillator on and off through transistor T4, which also supplies a 2 Hz switching waveform, via connection ‘Q’, to the display section T7...T9 and LEDs ‘A’ and ‘B’ (figure 2c). A similar 2 Hz switching waveform, in antiphase to the one which appears at ‘Q’, is supplied to the display section by T1 via ‘P’. As will be seen later, these switching waveforms are needed to enable an unambiguous display to be obtained from two LEDs only.

An optional third LED (shown in the circuit as LED ‘C’) can be connected in series with the 680 Ω resistor R9 between ‘Q’ and supply negative. This will give a partial test of the tester itself by blinking in step with the slow oscillator waveform if this is functioning.

2 kHz square waves of equal amplitude and opposite polarity are produced intermittently at the collectors of T5 and T6. These two points, which drive the whole of the test circuitry, are marked ‘X’ and ‘Y’ respectively. When the fast oscillator is turned off, T5 is cut off and its collector (‘X’) is at its higher potential.

The left-hand half of figure 2b is the section in which PNP-transistors are tested. It has been shown that 2 kHz square waves of equal amplitude and opposite polarity are being injected intermittently at ‘X’ and ‘Y’.

Display

Assume that a (good) PNP transistor is plugged in at the test point TA in figure 2b. When the fast oscillator is off, ‘X’ is positive and ‘Y’ is negative. The terms ‘positive’ and ‘negative’ are used to denote the higher and lower potentials taken up by various points in the circuit.

Both the transistor T10 and the transistor TA under test are therefore cut off, and the connection joining the collectors of T10 and TA is floating. The diode D10 does not pass any current and the Darlington pair TI1 and TI2 is cut off. Figures 2b and 2c show that the collector of TI2 is one of the points connected to the base of T9 (point A). When TI2 is cut off, ‘A’ is positive and T9 is therefore also cut off. LED ‘B’, which is in the collector lead of T9, is therefore off, and the collector of T9 is negative.

To find what LED ‘A’ is doing, the other switching waveforms, derived from the slow oscillator via ‘P’ and ‘Q’, must now be examined. To switch the fast oscillator off, ‘Q’ must be negative; therefore ‘P’ is positive. TI2 is connected to ‘P’, so TI7 can conduct if its base receives a positive drive from the collector of T9 via R19.

In the situation now under consideration, however, the collector of T9 is negative and TI7 does not pass current. TI8 is also returned to the negative rail through LED ‘A’, but ‘Q’ is negative so LED ‘A’ stays off.

Recapping at this stage, with a good
transistor and when the fast oscillator is turned off, both LEDs are off.

It has been seen that the three points which determine the LED display are 'A', 'P' and 'O'. The basic relationship is as follows:

1. When 'P' is positive (i.e. the fast oscillator is turned off), LED 'A' will light up if the base of NPN transistor T7 is driven positively from the collector of T9.
2. When 'Q' is positive (i.e. the fast oscillator is turned on), LED 'A' will light up if the base of PNP transistor T8 is driven negatively from the collector of T9.
3. LED 'B' lights up when the collector of T9 is positive, irrespective of whether 'P' or 'Q' is positive.
4. When 'A' is negative, the collector of T9 is positive.

These relationships can be combined in a kind of truth table which will help in predicting the display for transistors or diodes in different states of health. They are also summarised, in a slightly different form, in figure 3a + b.

<table>
<thead>
<tr>
<th>FAST OSCILLATOR TURNS</th>
<th>LED A</th>
<th>LED B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>positive</td>
<td>Off</td>
</tr>
<tr>
<td>Off</td>
<td>negative</td>
<td>On</td>
</tr>
<tr>
<td>On</td>
<td>positive</td>
<td>Off</td>
</tr>
<tr>
<td>Om</td>
<td>negative</td>
<td>Off</td>
</tr>
</tbody>
</table>

What happens during the bursts when the fast oscillator is turned on?

'X' and 'Y' are being swung alternately positive and negative with opposite polarities at 2 kHz. When 'X' swings positive and 'Y' swings negative, the same reasoning which was applied to the situation when the fast oscillator is turned off will indicate that 'A' swings positive and LED 'B' is off. In this case, however, the fast oscillator is turned on ('Q' is therefore positive) and LED 'A' lights up.

When 'X' swings negative and 'Y' swings positive, it will be seen from figure 2b that both T10 and the transistor under test in T8 are turned on. The emitter of T8 is directly connected to supply positive, while the emitter of T10 is connected to supply negative through the 490 Ω resistor R28. If the current gain of T8 is high enough, the potential at the collector of T8 will move positively, D10 will conduct and the base of T11 will also move positively. (This will be discussed in more detail later.)

The emitter of T12, the other transistor in the Darlington pair, is held by R30 and R31 at half supply rail potential, so T12 is turned on; its collector potential (point 'A') swings negative and, as can be seen from the table, LED 'B' lights up and LED 'A' is off.

So the LED display while the fast oscillator is turned on and the transistor is a 'good' one is that 'A' and 'B' each come on during alternate half-cycles of the 2 kHz oscillation. Both LEDs therefore appear to be on during each 2 kHz burst, and it has already been seen that both are off while the fast oscillation is turned off.

Figure 1. Block diagram of the arrangement for testing a PNP transistor. For clarity, the breakdown voltage test and the complementary test for an NPN transistor have been omitted.

Figure 2. Complete circuit of the TUP/TUN tester. Block A is the collector section, B contains the test bridges for NPN and PNP transistors and C shows the breakdown voltage testing and display sections.

The full cycle for a 'good' transistor is that both LEDs blink on and off together (figure 3c). It will be seen later that this display occurs only with a transistor which is good according to all the criteria that are tested in socket T8.

Transistor with low current gain ('a')

When the fast oscillator is turned off,
'X' swings positive and 'Y' swings negative, so both T10 and the transistor under test in T_A are cut off. Their commoned collectors are floating, and by the same sequence of events as described for a good transistor, the voltage at the collector of T9 is low and LED 'B' is off. It can be deduced from the table that this combination of switching voltages leads to LED 'A' also being off.

When the fast oscillator comes on and swings 'X' and 'Y' negative and positive respectively, T10 and T_A are both turned on. The potential at the base of T10 is therefore determined by the potentiometer R15 (figure 1a), R26 and R27, i.e.

$$20 \times \frac{33}{4.7 + 120 + 33} = 4.2 \text{ V}.$$

The base-emitter voltage drop in T10 will be about 0.7 V, so the voltage at the emitter of T10 cannot rise above 4.2 V − 0.7 V = 3.5 V. T10 is therefore acting as a current source, its collector current being stabilised at the value determined by this latter voltage and the emitter resistor R28, i.e.

$$\frac{3.5 \times 10^3}{470} \text{ mA} \approx 7.4 \text{ mA}$$

As the emitter of T_A is directly connected to the positive supply rail, its base current is determined by the voltage (about 19 V) between 'X' and the positive rail, and by R25, i.e.

$$18 \times 10^6 \mu \text{A} \approx 70 \mu \text{A}$$

(The base-emitter resistance can be disregarded in this context.)

It has been mentioned that T10 acts as a current source attempting to stabilise the collector current through both transistors to a current of 7.4 mA, which corresponds to a current gain of something over 100 for the transistor under test. If T_A cannot produce this current, T6 bottoms and the voltage at the connected collectors of T_A and T10 becomes too low for T11 and T12 to be turned on (figure 3d). So the potential at 'A' remains positive and LED 'B' stays off. The table will show that LED 'A' comes on.

When the fast oscillator swings to its other polarity (i.e. 'X' swings positive and 'Y' swings negative) the linked collectors of T_A and T10 revert to the floating condition, so that the Darlington pair T11 and T12 remains non-conductive and 'A' positive. LED 'B' therefore stays off and LED 'A' stays on.

Summarising: the LED display with a transistor of low current gain is that LED 'A' blinks and LED 'B' stays on.

Transistor with high capacitances

When the fast oscillator is turned off, the situation is the same as in both the cases already examined: T10 and the transistor under test are both cut off, and this leads to LED 'A' and LED 'B' both being off. When the fast oscillator comes on and swings 'X' negatively and 'Y' positively, both transistors are turned on, but if T_A has high collector-to-base (C_b) and/or collector-to-emitter (C_e) capacitance, its response is delayed. The voltage rise at its collector is slowed down as these capacitances discharge, but the voltage will probably level off at its 'final' value before the end of the period in which T_A is turned on, and when this happens LED 'B' comes on while LED 'A' stays off (figure 3e).

When, however, T_A and T10 are once more turned off by the swings at 'X' and 'Y', the capacitances can recharge only through the Darlington pair T11 and T12 (which has, by definition, a high input impedance) and through the 10 MΩ resistor R29. The drop in potential at the collector of T_A, as the capacitances recharge, is slower than it would be with a normal transistor, and if the capacitances are too large the potential will not fall far enough to turn T11 off (and therefore LED 'A' on) and LED 'B' off before the time when T_A and T10 are turned on once again. So LED 'B' will stay on, and LED 'A' off, throughout each period when the fast oscillator is turned on.

With slightly smaller capacitances, LED 'A' may come on dimly if the slow recharge of excess capacitance only allows this LED to turn on for a small amount of time.
Transistor with high leakage

A transistor with high leakage current tends to behave, from the tester’s point of view, as though it were turned on all the time. In all the cases examined so far, no collector current flows in the transistor under test while the fast oscillator is turned off. If, however, there is a leakage current between collector and emitter, this will flow through R10 and R29 to the negative rail even when ‘X’ is positive and both T1 and T10 are supposed to be cut off. This leakage current develops a voltage across the 10 MΩ resistor R29, and therefore raises the potential at the base of T11.

It will be recalled that the emitter of T12 is held at half the supply voltage (i.e. about 10 volts) by the potentiometer R30 and R31. So if the leakage current is a little more than 1 μA, it will build up a voltage sufficient to turn on T11 and T12 and thus light up LED ‘A’ and LED ‘B’ while the fast oscillator is turned off. When the fast oscillator is turned on and the display transistors are switched through ‘P’ and ‘Q’, LED ‘B’ stays on but LED ‘A’ goes out (figure 3f).

With a transistor having a leakage current of 1 μA or more, LED ‘B’ stays on and LED ‘A’ flashes.

Transistor with base and collector or emitter and collector short-circuited

A transistor with one of these faults 'looks like' one with high leakage (only more so). A current can flow from the positive rail through the emitter-base part of each fast-oscillator cycle.

Summarising again: the display for high capacitance is that LED ‘B’ blinks on and off while LED ‘A’ remains off or blinks dimly.

Transistor with high leakage

A transistor with high leakage current tends to behave, from the tester’s point of view, as though it were turned on all the time. In all the cases examined so far, no collector current flows in the transistor under test while the fast oscillator is turned off. If, however, there is a leakage current between collector and emitter, this will flow through D10 and R29 to the negative rail even when ‘X’ is positive and both T1 and T10 are supposed to be cut off. This leakage current develops a voltage across the 10 MΩ resistor R29, and therefore raises the potential at the base of T11.

It will be recalled that the emitter of T12 is held at half the supply voltage (i.e. at about 10 volts) by the potentiometer R30 and R31. So if the leakage current is a little more than 1 μA, it will build up a voltage sufficient to turn on T11 and T12 and thus light up LED ‘A’ and LED ‘B’ while the fast oscillator is turned off. When the fast oscillator is turned on and the display transistors are switched through ‘P’ and ‘Q’, LED ‘B’ stays on but LED ‘A’ goes out (figure 3f).

With a transistor having a leakage current of 1 μA or more, LED ‘B’ stays on and LED ‘A’ flashes.

Transistor with base and collector or emitter and collector short-circuited

A transistor with one of these faults 'looks like' one with high leakage (only more so). A current can flow from the positive rail through the emitter-base

<table>
<thead>
<tr>
<th>DISPLAY</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED A</td>
<td>LED B</td>
</tr>
<tr>
<td>Good (Breakdown voltage > 20 V)</td>
<td>Fail (for connections reversed)</td>
</tr>
</tbody>
</table>

Key to display as for figure 4.

Summary

- LED ‘B’ blinks on and off while LED ‘A’ remains off or blinks dimly.
- A transistor with high leakage current tends to behave as though it were turned on all the time.
- A transistor with base and collector or emitter and collector short-circuited looks like one with high leakage.
- A current can flow from the positive rail through the emitter-base part of each fast-oscillator cycle.

Combined display

<table>
<thead>
<tr>
<th>DISPLAY</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED A</td>
<td>LED B</td>
</tr>
<tr>
<td>Conducts satisfactorily</td>
<td>Not conducting, i.e. open circuit or connections reversed</td>
</tr>
</tbody>
</table>

Key to display as for figure 4.
junction and the base-collector short in \(T_A \) (or directly through the emitter-collector short), through \(D_{10} \), and through the 10 M\(\Omega \)-resistor \(R_{29} \). It has been shown that a leakage current as low as 1\(\mu \)A can turn on \(T_{11} \) and \(T_{12} \) and therefore make LED 'B' light up and LED 'A' go out while the fast oscillator is on. When the fast oscillator is off, LED 'A' lights up and 'B' stays on. So the display with base and collector or emitter and collector short-circuited is that LED 'B' stays on all the time, and LED 'A' blinks on and off (figure 3g).

Transistor with base and emitter short-circuited

When the base and emitter are short-circuited, no 'normal' base current can flow, and therefore there is no collector current. So the transistor 'looks like' one with zero \(\alpha' \); and the LED display is the same: i.e. LED 'A' blinks and LED 'B' stays off (figure 3g).

Combined leak and low current gain or combined leak and base- emitter short

While the fast oscillator is off, the display is the same as for a leaky transistor: both LED 'A' and LED 'B' are on. When the fast oscillator is on and is turning \(T_A \) and \(T_{10} \) off, the leakage current holds the collectors of \(T_{10} \) and \(T_{11} \) high enough in potential to turn on \(T_{11} \), resulting in LED 'A' being off and LED 'B' being on. When the fast oscillator turns \(T_{10} \) and \(T_{11} \) on, the low current gain of \(T_A \) allows \(T_{10} \) to overcome both the leakage current and the collector current (if any) in \(T_A \) and pull down the potential of the commoned collectors, whereupon LED 'A' comes on and LED 'B' goes off. This alternate lighting up of LED 'A' and LED 'B' is at the speed of the fast oscillator, and both LEDs stay on while the fast oscillator is turned off, so we have a display cycle in which both LEDs appear to be on continuously (figure 3i).

Other combinations of Faults

It would not be a very profitable exercise to list the LED displays with all possible combinations of faults, but it can be said that only a transistor which is 'sound in wind and limb' according to all the test criteria will give the 'good transistor' display in both test sockets.

PNP and NPN transistors

The foregoing descriptions apply to PNP transistors. They also hold good, mutatis mutandis, for NPN transistors plugged into test socket TB, which appears on the right-hand side of figure 2b. The functions performed by \(T_{10}, T_{11} \) and \(T_{12} \) and associated components for PNP transistors are performed by \(T_{13}, T_{14} \) and \(T_{15} \) and associated components for NPN transistors. In this case, however, the transistors \(T_{13} \) and \(T_{14} \) which pass on a voltage drop at the anode of \(D_1 \) are not a Darlington pair but a complementary PNP-NPN pair.

If a transistor is plugged into the wrong test socket (PNP into an NPN socket or vice versa), the base-to-collector path becomes equivalent to a forward-connected diode, and the display is the same as for a transistor with a base-collector short.

The transistor will not be damaged, and it is clearly a good thing, when one shows up unexpectedly as 'faulty', to check whether it has been plugged into the wrong holes!

Breakdown Voltage Test

The sockets for this test are \(T_C \) and \(T_D \), shown in figure 2c. The effective breakdown test voltage is about 20 V, and if breakdown current flows the voltage at 'A' is pulled down continuously resulting in LED 'A' blinking and LED 'B' staying on throughout the cycle. For a transistor which passes the test, LED 'A' blinks and LED 'B' stays off all the time (figure 5).

Diode Tests

By plugging the anode and cathode leads of a diode into the emitter and collector sockets of the PNP test points (or the other way round with the NPN test points) it can be tested for forward conduction, leakage and breakdown voltage. When the fast oscillator is off, the junction of the diode cathode and the collector of \(T_{10} \) will be held positive by the conduction of the diode, and the conduction is good enough, the junction will remain positive when \(T_{10} \) is turned on (through 'Y') by the fast oscillator. When \(T_{10} \) is turned off the junction will still be positive. This leads to a display cycle in which LED 'A' blinks and LED 'B' stays on continuously (figure 6).

When the diode is non-conducting, open-circuited or connected the wrong way round, the junction of \(T_{10} \) collector and the cathode (or anode) will remain negative throughout the oscilloscope cycle, giving a display in which 'A' blinks and 'B' remains off. When a diode deliberately connected the wrong way round, this display gives an indication (if the diode is a good one) that it is blocking properly in the reverse direction. If a diode is short-circuited or leaking severely, it will give the wrong display, when plugged in the wrong way round, as a good diode connected to correct way round. It is just possible, however, that it is a good diode plug...
Stabilised supply

Tr = 20 V/100 mA
C5 = 100 μ/35 V

C6 = 10 μ/35 V
T16 = BC237B
D18 = 20 V Zener

Parts list

Resistors:
R1, R7, R24, R30, R31, R34 = 10 k
R2, R3, R6, R8 = 22 k
R4, R5 = 220 k
R9 (if used), R16, R21 = 680 Ω
R10, R11, R14, R15 = 4 k7
R12, R13, R32, R33 = 100 k
R17 = 2x7
R18, R19 = 47 k
R22 = 1 k
R25, R40 = 270 k
R26 = 120 k
R27, R38 = 33 k
R28, R37, R20 = 470 Ω
R29, R36 = 10 M
R23, R35 = 1 M
R30 = 120 k
R40 = 270 k

Capacitors:
C1, C2 = 4.77
C3, C4 = 5n6

Semiconductors:
T1, T4, T8, T9, T15 = BC307B or equ.
T2, T3, T5, T6, T7, T10, T12, T13, T16 = BC237B or equ.
T11 = BC239C or equ.
T14 = BC179C or equ.
D1 ... D17 = BAX13, BY126, BY127, 1N4002, or other general-purpose silicon diodes
2 x LEDs

Unstabilised supply

Tr = 18 V/100 mA
C5 = 1000 μ/25 V

Stabilised supply with IC

IC = µA78M1BHC or equ.
Tr = 20 V/100 mA
C5 = 100 μ/35 V
C6 = 10 μ/35 V
Figure 10. Front panel design for the tester. This panel is available via the Elektor print service, with black lettering on an aluminium background.

in the correct way round, i.e. that one has mistakenly connected it this way instead of reversing the connections. So it is important to make tests in both polarities if ambiguities are to be avoided.

If a diode which leaks moderately is plugged in the wrong way round, the leakage current may be enough to hold the anode of D10 positive while T10 is turned off, but not while T10 is turned on. This will give a display in which both LEDs appear to be on continuously - the same as for a transistor which is both leaky and low in current gain.

General

Figure 3 summarises the LED indications when the fast oscillator is on or off, and for different potentials at the anode of D10 in the main PNP testing section. The difference between this figure and table 1 is that the table is based on the fast oscillator and point 'A', which is common to the main testing circuits and to the breakdown voltage testing circuit. The relationship between the potential at the anode of D10 and the potential at 'A' when the main PNP testing section is in use is that a high potential at the anode of D10 produces a low potential at 'A' and vice versa. Figures 4, 5 and 6 summarise the meanings of the possible LED indications for various tests. Figure 4 is, of course, derived from figure 3. The front panel design (figure 10) summarises all three figures.

Construction and testing

Unless one has access to an independent means of testing the transistors and diodes, these should be ones which carry the manufacturers' warranty. Resistors should have 5% tolerance.

Figure 9 shows the p.c. board and the component layout for the complete tester (with the exception of the mains transformer). It should be noted that the emitter and collector connections to the test sockets appear to be interchanged, but when the sockets are mounted on the copper side of the board the connections will be correct. This facilitates the mounting of the board flush under the top panel, without the other components getting in the way.

As it is not possible to give meaningful voltage or current test values for individual transistors, which might help to localise mistakes or faults, the construction should be checked very carefully. Even if one does not intend to use the optional LED 'C', one of the LEDs which will ultimately serve as 'A' or 'B' can be 'borrowed' at the constructional stage to serve temporarily as 'C' and thus give a check whether the slow oscillator (T2 and T3) and also T4 is working. The actual value of the nominally 680 Ω resistor in series with 'C' is not critical. If the temporary 'C' is seen to blink at about the right rate, test number 1 of figure 7 will show whether T8 is also working. Test number 2 will show whether T7, T9, T11 and T12 are working if the short is put into test socket TA1 and T7, T9, T13 and T14 with the short in test socket TA3.

To check the complete PNP and NPN testing sections, including the breakdown voltage test, one will need spare PNP and NPN transistors known to be sound, in addition to those used in building the tester. Only a transistor with normal current gain, or with a particular combination of faults, can produce a display in which LED 'B' blinks.

Once the two good transistors have been seen to give the display for test number 3 of figure 7, the more refined test number 4, which simulates the effect of excessive capacitance, can be applied. A 22 pF capacitor should be enough to make LED 'A' black out altogether, but it may be of interest to experiment with different lower capacitor values to find what value of capacitor is just low enough to allow the waveform at the junction of TA1 and T10 to extend below the critical level (about 10 V) and cause LED 'A' to blink dimly, as shown in figure 3e.

The emitter-base junction of a transistor forms a diode with a reverse breakdown voltage of about 5 V, so one of the transistors used in the foregoing checks can also be used to check the breakdown voltage testing section (figure 7; number 5). One must make sure that it is connected the right (or is it the wrong?) way round.

Power Supplies

Three different possibilities are offered for a mains power supply unit (figure 8): a simple unstabilised unit, a stabilised unit with the stabilisation circuit built up from three discrete components, or a stabilised unit using an IC. The unstabilised unit uses a transformer with an 18 V secondary - which may sometimes be difficult to obtain - and a 1000 μF capacitor. If either of the stabilisation circuits is used, the capacitor can be much smaller. The 20 V transformer used in these circuits should be more readily obtainable.

The transistor or IC should have a heatsink.
Table 1a. Minimum specifications for TUP and TUN.

<table>
<thead>
<tr>
<th>Type</th>
<th>VCEO</th>
<th>IC</th>
<th>HFE</th>
<th>Ptot</th>
<th>fT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUP NPN</td>
<td>20 V</td>
<td>100 mA</td>
<td>100</td>
<td>100 mW</td>
<td>100 MHz</td>
</tr>
<tr>
<td>TUP PNP</td>
<td>20 V</td>
<td>100 mA</td>
<td>100</td>
<td>100 mW</td>
<td>100 MHz</td>
</tr>
</tbody>
</table>

Table 1b. Minimum specifications for DUS and DUG.

<table>
<thead>
<tr>
<th>Type</th>
<th>UR</th>
<th>IF</th>
<th>IR</th>
<th>Ptot</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUS Si</td>
<td>25 V</td>
<td>100 mA</td>
<td>100 μA</td>
<td>250 mW</td>
<td>5 pF</td>
</tr>
<tr>
<td>DUG Ge</td>
<td>20 V</td>
<td>35 mA</td>
<td>100 μA</td>
<td>250 mW</td>
<td>10 pF</td>
</tr>
</tbody>
</table>

Table 2. Various transistor types that meet the TUN specifications.

|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|

Table 3. Various transistor types that meet the TUP specifications.

<table>
<thead>
<tr>
<th>TUP</th>
<th>BC157</th>
<th>BC158</th>
<th>BC177</th>
<th>BC178</th>
<th>BC204</th>
<th>BC205</th>
<th>BC206</th>
<th>BC212</th>
<th>BC213</th>
<th>BC214</th>
<th>BC251</th>
<th>BC252</th>
</tr>
</thead>
</table>

Table 4. Various diodes that meet the DUS or DUG specification.

<table>
<thead>
<tr>
<th>DUS</th>
<th>BA127</th>
<th>BA217</th>
<th>BA218</th>
<th>BA221</th>
<th>BA222</th>
<th>BA317</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUG</td>
<td>OA85</td>
<td>OA91</td>
<td>OA95</td>
<td>AA116</td>
<td>AA117</td>
<td>AA118</td>
</tr>
</tbody>
</table>

Table 5. Minimum specifications for the BC107, 108, 109 and BC177, 178, 179 families (according to the Pro-Electron standard). Note that the BC179 does not necessarily meet the TUP specification (ICmax = 50 mA).

<table>
<thead>
<tr>
<th>NPN</th>
<th>PNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC107</td>
<td>BC177</td>
</tr>
<tr>
<td>BC108</td>
<td>BC178</td>
</tr>
<tr>
<td>BC109</td>
<td>BC179</td>
</tr>
<tr>
<td>BC147</td>
<td>BC157</td>
</tr>
<tr>
<td>BC148</td>
<td>BC158</td>
</tr>
<tr>
<td>BC149</td>
<td>BC159</td>
</tr>
</tbody>
</table>

Whereas possible in Elektor circuits, transistors and diodes are simply marked 'TUP' (Transistor, Universal PNP), 'TUN' (Transistor, Universal NPN), 'DUS' (Diode, Universal Germanium) or 'DUG' (Diode, Universal Silicon). This indicates that a large group of similar devices can be used, provided they meet the minimum specifications listed above.

For further information, see the article 'TUP-TUN-DUS' in Elektor 1, p. 9.

<table>
<thead>
<tr>
<th>NPN</th>
<th>PNP</th>
<th>Case</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC107</td>
<td>BC177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC108</td>
<td>BC178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC109</td>
<td>BC179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC147</td>
<td>BC157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC148</td>
<td>BC158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC149</td>
<td>BC159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC171</td>
<td>BC251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC172</td>
<td>BC252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC173</td>
<td>BC253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC182</td>
<td>BC212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC183</td>
<td>BC213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC184</td>
<td>BC214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC192</td>
<td>BC252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC193</td>
<td>BC253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC194</td>
<td>BC254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC207</td>
<td>BC255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC208</td>
<td>BC256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC209</td>
<td>BC257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC210</td>
<td>BC258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC211</td>
<td>BC259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC212</td>
<td>BC260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC213</td>
<td>BC261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC214</td>
<td>BC262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC215</td>
<td>BC263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC216</td>
<td>BC264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC217</td>
<td>BC265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC218</td>
<td>BC266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC219</td>
<td>BC267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC220</td>
<td>BC268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC221</td>
<td>BC269</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The letters after the type number denote the current gain:
- A: α (β, Hfe) = 125-260
- B: α2 = 240-500
- C: α3 = 450-900
interference suppression in cars

Electrical interference generated by cars can be a source of annoyance, not only to the car occupants, but also to users of other electronic equipment external to the vehicle. This article discusses some of the more common causes of interference and their cure.

Anyone who has installed a car radio and then discovered that the programme is drowned out by odd buzzes, pops and crackles will know how difficult it is to trace and suppress interference. Commercially available ‘do-it-yourself’ suppression kits often do not effect a cure, because the interference is not dealt with at source.

Interference in cars on radio and T.V. bands is caused by high-frequency energy, usually produced by arcing contacts, but also by discharge of static electricity. The interference may be continual, for example that originating from the ignition circuitry, or it may be transient, such as interference occurring when light switches or brake lights are operated. Windscreen wiper motors can also generate substantial interference when they are running.

Interference may be divided into two groups:
1. External Interference.
2. Internal Interference.

External interference affects not only electronic equipment in the car but also radios and televisions in the vicinity. Internal interference is usually restricted to bad reception on the car radio.

The principal sources of interference in a car are as follows:

- Ignition system
- Dynamo and regulator
- Screened or suppressed plug caps
- Electric fan (if fitted)
- Ignition switch
- Light switches
- Starter motor
- Starter relay and switch
- Trafficator flasher unit relays
- Ignition switch

Some of these, such as the ignition switch and light switches, cause interference of a very transient nature and are probably not worth bothering with.

The ignition system is the most powerful source of interference and will be dealt with first. Interference can be suppressed at various points in the ignition circuit. Figure 1 shows a typical arrangement of the high-tension side of an ignition system. Screened plug caps provide a good degree of suppression. The screening makes contact with the plug base and covers the porcelain insulator. A typical screened plug cap is shown in figure 2. These are available from auto-electricians. Plug caps with a built-in suppression resistor are also effective, or alternatively ‘carbon-string’ H.T. leads may be used, though the mechanical reliability of these is questionable. The distributor may already have suppression incorporated, but if not, suppressor caps may be fitted to the distributor cover. These should have a resistance of about 1 k. Alternatively, in-line suppression may be fitted in the plug leads near the distributor.

If a radiotelephone is installed in a car, an extreme degree of ignition suppression may be necessary in the form of screened cables for all H.T. leads and connections to the coil. Under normal conditions the coil itself may be suppressed by connecting a capacitor of about 3 μF 400 V between the SW (ignition) switch terminal of the coil and earth. Figure 3 shows how this is done.

The second important source of interference is the dynamo/regulator system of the car. Dynamos generally have two connections, one to the armature (via the brushes and commutator), which is in the output terminal of the dynamo, and the other to the field winding, the current...
through which controls the output voltage.

The commonest type of electromechanical voltage/current regulator has three relays that respond to dynamo output voltage and charging current and control these parameters. The contacts of these relays can generate interference, as can the dynamo commutator/brush contact. Small cars with dynamos of less than 300 W output often have the regulator integral with the dynamo. In that case the terminals of the dynamo are not directly accessible and there are only two connections to the voltage regulator. One is the output terminal to the battery and the other is the connection to the ignition warning light. The battery terminal may be decoupled with a 3 μF capacitor and the indicator terminal with a 0.5 μF capacitor (no larger!) as shown in figures 5 and 6.

For larger dynamos with remotely-mounted regulator, suppression may be connected as shown in figure 9. For improved suppression, capacitors of the non-coaxial feed-through type may be used. These have a lower series self-inductance than the normal type of suppressor capacitor as the current flows in through one terminal virtually right up to the capacitor plates, and out of the other terminal. Any lead inductance is in series with the current-carrying input and output cables. With the normal type of capacitor a length of (inductive) cable connects it to the terminal it is supposed to suppress, which increases its impedance to high frequencies, when it should have a low impedance to shunt them to earth. A non-coaxial feedthrough capacitor is shown in figures 7 and 8. If capacitors on the three regulator terminals and on the dynamo armature terminal do not provide sufficient suppression a suppressor filter can be connected in the field cable as shown in figure 9. This can be home-made from a 10 n low-inductance capacitor and a 0.05 ohm resistor wound from 2½ m of 19 SWG copper wire.

Electric Motors

All electric motors in a car (windscreen wiper, heater, electric cooling fan) are potential sources of interference. They can usually be suppressed by a 3 μF capacitor on the supply terminal. If this is not sufficient then non-coaxial feed-through capacitors of 0.5 to 2.5 μF must be used.

Electrostatic Charges

If annoying crackles and pops are heard from the car radio when driving on dry roads, this may be due to electrostatic charges building up on the tyres because of friction between the tyres and the road. Since the grease film in the wheel bearings forms an efficient insulator such charges cannot leak away to chassis except when they achieve a high
Thefts of cars, or accessories and/or other articles in them, are becoming more and more common. By the same token, anti-theft alarms for cars are becoming more and more of a necessity.

Each of the four different designs described in this article allows for variations on the basic concept; this makes it possible to choose circuits that will suit a large variety of requirements and budgets.

Each year an increasing number of cars are stolen. The majority of them are quickly recovered, but at least they have been abandoned on running out of petrol, and often they are a total write-off, with everything of value removed. Thefts of articles from cars are still more common, especially now that expensive in-car entertainment systems are so popular. When compared with the possible loss of property and/or no-claims bonus, the cost of installing a burglar alarm is negligible, and a number of designs are presented here, which vary in cost from about 10 p to £10, and give varying degrees of protection. Even with an alarm installed, however, do not ignore the simple precautions advised by the police. Lock all valuables in the boot, and make sure that all doors and windows are securely fastened.

Circuit No. 1

The simplest of the burglar alarms can be constructed from components that most enthusiasts will have in their junk box. It makes use of the door courtesy light switches and the horn relay, and the only additional components required are three diodes and a hidden switch to activate and de-activate the alarm. However, one door of the car is left unprotected.

The circuit operates as follows:

- S_1 and S_2 are the courtesy light switches. When the hidden switch S_3 is closed, opening the door protected by S_2 causes the horn relay to operate via S_1, D_2 and S_2. When the horn relay contacts close the horn sounds and the cathode of D_3 is grounded via the relay contacts. This latches the horn relay via S_3 and its own contacts. The horn will continue to sound even if the door is closed, unless S_3 is opened. The door containing S_1 is, of course, not protected, as when S_1 is closed D_1 is reverse biased and only the interior light operates.

- When the alarm is not armed (S_3 open), D_2 prevents the interior light from lighting when the horn hutton is pressed and D_3 prevents the horn from sounding when the interior light is switched on.

- Additional courtesy light switches (in the case of a four-door car) may be connected in parallel with S_3, and switches to protect glove compartment and other ancillary equipment may be connected between point 'A' and ground.

This simple alarm will provide a fair degree of protection at little cost, but it should be noted that alarms which sound indefinitely after being triggered are illegal in some European countries.

Circuit No. 2

Figure 2 shows the circuit of a more sophisticated alarm, which protects all the doors and arms itself after the driver has gone out of the car. The alarm is activated by a concealed switch S_1. After this switch has been closed the occupants have about 15 seconds to get out of the car and shut the doors. During this time C_1 is being charged via R_1, R_2 and the base-emitter junction of T_1. T_1 is thus turned on, shorting out C_2. When C_1 is charged to almost the supply voltage T_1 turns off. If now one of the doors is opened the courtesy light switch S_2 closes and C_2 charges rapidly via D_1 and R_3, turning on T_2. C_3 begins to charge slowly via R_5, which gives time for the owner of the car to de-activate the alarm by opening S_1. After about 15 seconds C_3 has charged to about 8 volts (with 12 V supply) and T_3 turns on. T_3 also turns on and the horn sounds. R_8 is effectively connected in parallel with R_10 when T_5 turns on, reducing the emitter potential of T_3 and causing it to turn on even harder. C_3 begins to discharge via D_4, R_7 and T_3 until it reaches a potential determined by the new emitter voltage of T_3 when T_3 turns off. T_4 and T_5 are turned off, the horn relay drops out and the emitter voltage of T_3 rises causing it to turn hard off. (It is apparent, therefore, that T_3, T_4, and T_5 function as a trigger circuit.) C_3 begins to charge again and the cycle is repeated. The horn therefore gives repeated short blasts, which (hopefully)
Figure 1. Circuit of the simplest burglar alarm consisting of three diodes and a switch. The door containing S_1 is not protected. Additional door switches should be wired in parallel with S_2, other switches such as boot and glove compartment between point A' and earth.

Figure 2. A more sophisticated alarm circuit. The door switches are wired in parallel with S_2. L is the interior light.

Figure 3. Block diagram of an alarm that can be triggered by a trembler switch as well as door switches. This alarm has no 're-entry' delay and must be de-activated by an external concealed switch.

Figure 4. The number of points protected by the alarm may be extended using a diode AND-gate for switches on boot lid, bonnet, glove compartment etc.

Circuit No. 3 (H. Bernstein)

A different approach is adopted in the circuit whose block diagram is given in Figure 3. This circuit has a switch-on delay to enable the driver to leave the car, but the alarm sounds immediately if one of the doors is opened, thus reducing the possibility of a thief breaking into the car and stealing something else before the alarm goes off. This does mean, of course, that the alarm must be de-activated before the driver enters the car. This may be done by a concealed switch outside the car, or by a reed switch mounted in the windscreen and operated by a magnet carried on the key-ring. This alarm also has a circuit operated by a trembler switch which will operate if the car is rocked or shaken. This will help prevent the theft of such articles as mirrors, fog and spot lamps, and will also operate if an attempt is made to force a door or window. Such switches can be bought, or can easily be home made. Figure 4 shows the method of connecting switches. S represents the door courtesy light switches. Additional switches may be wired as shown in dotted lines. The diodes form an AND gate and isolate the switches from one another so that they do not interact. A diode is only required in series with each switch that performs some additional function as well as being connected to the alarm system. Thus, when there is a switch in the boot that operates the boot interior light, then a diode is required in series with this to prevent the light being switched on by the other switches. Where a switch is installed solely for the purpose of the alarm (e.g. in the glove compartment) then no diode is required.

The circuit of the complete alarm is given in Figure 5. It operates as follows: Before leaving the car S_1 is opened. This initiates the switch-on delay as C_1 charges. T_1 turns off, which turns off T_2 and T_3. The alarm is now set. If one of the switches connected to points a-d is closed, C_2 is rapidly discharged via R_6, and T_4 turns on, sounding the horn. The alarm will continue for up to two minutes even if the switch is opened, as C_2 charges again.

A separate circuit is included for the
trembler alarm. T2 grounds the base of T6 via D7 until after the switch-on delay. If the trembler switch S₄ subsequently closes momentarily, C₃ rapidly discharges via R₇, turning on T₅. This turns on T₆ and the alarm sounds until C₃ has recharged, when T₅ turns off. Re-entering the car is accomplished by momentarily closing the concealed switch S₂, which discharges C₁ and initiates the switch-on delay so that the driver can enter the car and close S₁, which de-activates the alarm.

Circuit No. 4
A block diagram of the most sophisticated alarm in this series is given in Figure 6. In many modern cars with a steering lock there is no need to have a concealed reset switch as a position is often available on the ignition switch that only opens when the switch is in the 'locked' position. It is thus possible, on entering the car, to de-activate the alarm by inserting the ignition key and turning it to the first position (without actually switching on the ignition). On cars without a steering lock, however, it will be necessary to use a separate concealed switch - or a separate lock-switch.

A timing diagram of the alarm is given in Figure 7. On removing the ignition key from the lock the driver has about one-and-a-half minutes to leave the car and lock the doors. If a door is subsequently opened there is a delay (adjustable from 5 to 15 seconds) to allow the driver to reset the alarm with the ignition key. Failing this, the alarm operates and the horn will sound continuously for 30 seconds. After this there is ten seconds silence, then short three second blasts with ten seconds silence in between until the alarm is reset or the door is closed. The complete circuit of the alarm is given in Figure 8. When S₄ is opened C₁ begins to discharge through R₁ and R₂. When the voltage on C₁ falls below the threshold voltage of gate 2 then the flip-flop consisting of gates 1 and 2 is set. This holds the input (pin 13) of gate 4 high, which means that when one of the door switches (represented by S₂) closes, the flip-flop consisting of gates 3a and 4a is set. The alarm is triggered, and even when the door (opening S₂) will not reset the flip-flop. C₂ and C₃ were previously charged through R₆ and D₃ from the output of gate 1a. C₂ and C₃ now discharge through R₅ into the output of gate 4a. C₃ may be optionally switched in by S₃ to increase the delay before the alarm sounds. With S₃ closed, the delay is about 15 seconds; with S₃ open the delay is only 5 seconds. If this facility is not required S₃ and C₃ may be omitted and C₂ replaced by a capacitor chosen to give the required delay. S₄ may be trembler switch or switch(es) on glove compartment, boot etc., which will discharge C₂ and C₃ rapidly and trigger the alarm.

When C₂ and C₃ have discharged the output of gate 2b goes high. This takes
pin 6 of gate 1b high. Since the other input is held high by R13 the output goes low, turning on T1 and T2 and sounding the horn. C8 charges through R14 and R15 in about 3 seconds, taking pin 13 of gate 3b high. Meanwhile C6 slowly charges through R11 and it is this time constant that determines the duration of the initial blast of the horn (about 30 seconds).

When the voltage on C6 exceeds the threshold voltage of gate 3b the output of this gate goes low, grounding pin 5 of gate 1b through C7 and R12. The output of 1b thus goes high and the horn switches off. C6 now discharges through D7, R14 and the output of gate 1b. C7 slowly charges through R13 and R12, and this time constant determines the 'off period of the horn (about 10 seconds). When C7 has charged to the threshold voltage of gate 1b the output goes low and the horn again sounds. C8 charges through R14 and R15, and this time constant determines the subsequent 'on' periods of the horn (about 3 seconds).

After this period the output of 3b goes low, grounding pin 5 of gate 1b through R12 and C7, and the whole cycle repeats. Gates 1b and 3b thus form an asymmetric multivibrator which causes the horn to produce short blasts at 10 second intervals. In addition, each time the horn is switched off a differentiating network consisting of R8, R9, C4 and C5 feeds a reset pulse to pin 9 of gate 3a, so that if the doors are closed during the horn 'off' period, the horn will not sound again and the alarm will be re-set.

The disadvantage of this alarm circuit is that it cannot easily be adapted for positive earth cars. On the other hand, it has the advantage that it is insensitive to spurious pulses due to the high noise immunity of COSMOS. The circuit will operate over a wider range of supply voltages without modification (4 to 14 volts), with almost the same delays.

Installation of the alarm

To ensure reliable operation the alarm should be mounted where it cannot be disabled by a thief, but not inside the engine compartment, which gets rather hot for COSMOS. Wiring should be concealed or made as inconspicuous as possible, especially wiring into the engine compartment if the car does not have a bonnet lock. In this case it is also wise to install an alarm switch in the bonnet lid, as otherwise the alarm could be disabled simply by disconnecting the battery. Another (somewhat expensive) possibility would be to power the alarm from a separate battery locked in the boot. Wiring from the battery to the alarm should, of course, be direct, not via the ignition switch, and the simplest way is to run cables from the battery side of the fuse box with in-line fuse holders in them.

When constructing any of these alarms it should be borne in mind that they may need to be adapted to suit particular...
Components list for figures 8 and 11

Resistors:
- R1, R6 = 10 k
- R2, R15 = 470 k
- R3, R7, R9, R10, R16 = 22 k
- R4, R5, R8 = 100 k
- R11 = 150 k
- R12, R14 = 47 k
- R13 = 1M5
- R17 = 1 k
- R18 = 4 k7

Capacitors:
- C1, C6 = 220μ/16 V
- C2 = 47μ/16 V
- C3 = 100μ/16 V
- C4 = 10 n
- C5 = 100 n
- C7, C8 = 10μ/16 V

Semiconductors:
- ICa, ICb = CD4011A
- T1 = TUP
- T2 = BC140 or equiv.
- D1 ... D8 = DUS

Figures 10 and 11. Board and component layout for figure 8.

This circuit can be used to give quite a natural imitation of a vibrating string. An astable multivibrator consisting of transistors T1 and T2 produces the fundamental tone. As long as switch S is not operated, the two transistors T3 and T4 are conducting, and thus the multivibrator output is short-circuited. When S is operated, the short-circuit is removed, and T3 is turned on whilst T2 is cut off. At the same time T6 conducts momentarily, C6 discharges and T4 is thus also cut off. The generator signal now occurring at the output slowly disappears as capacitor C5 charges again. If S is closed before the tone has disappeared, it is abruptly cut off because T3 is turned on again.

With this circuit a tone can be produced whose frequency depends on the setting of P3 and on the values of C1 and C2. The values for these capacitors can be determined by experiment; they will generally be chosen in the range 1 ... 10 μ.

If several of these stages are interconnected via resistors, a simple synthesizer can be built.

Final Remarks

The designs discussed in this article give varying degrees of protection at varying cost. It should be remembered that any protection is better than none - the majority of thieves are amateurs and will be deterred by even the simpler circuits described.
h-l logic tester

This is a TTL logic probe which, instead of the usual LED to indicate the logic states, uses a seven-segment Minitron or LED display to indicate 'H' for a high or '1' state and 'L' for a low or '0' state. The circuit also detects when the probe input is open-circuit and the readout is suppressed, thus indicating that contact with the desired test point has not been made. This avoids the false readings that may occur with some types of probe when the input is not connected.

The circuit makes use of a 7447 decoder driver. The input circuitry to this IC is designed so that when the input to the probe is high a '1' is applied to the 'C' or 4 input of the IC. When the input to the probe is low a '1' is applied to the 'A', 'B' and 'D' or 1, 2 and 8 inputs of the IC. This results in the display of the number 4 and the symbol respectively in accordance with the truth table for the 7447. However, the connections from the outputs of the IC to the segments of the display are rearranged so that the display is actually 2 and 1. When the input to the probe is open-circuit all four inputs to the 7447 are high (A = B = C = D = 1, i.e. '15') and the display is completely suppressed.

The input circuitry operates as follows: N1 and N2 are exclusive-OR gates. When a '0' is applied to the probe input both inputs of N1 are '0' so the output is also '0'. One input of N2 is held at '0' via R1 and the other is held at '1', by R2, so the output is '1'. This output is connected to the A, B and D inputs of the 7447. When the probe input is '1' one input of N1 is '0' and the other is '1', so the output is '1'. This output is connected to the C input of the 7447. Both inputs of N2 are '1', so the output is '0'. When the probe input is open-circuit the input of N1 is not connected to ground floats at just above the '1' threshold level, so the output is '1'. The forward voltage drop of D1 and D2 prevents this from holding the input of N2 high, so the input is held low by R1. The other input is, of course, held high so the output is '1'.

Figure 1. Connections from outputs of 7447 to display segments.

Figure 2. Complete Circuit of the H-L tester, showing the alternative connections for Minitron and LED display.
measurement results

Input impedance: 60 ... 160 kΩ, depending on
Input sensitivity: 70 ... 170 mV (adjustable)
Output impedance: 1 kΩ or up to 4 kΩ, depending on
Maximum output level: 180 mV (or up to 850 mV)
S/N ratio: better than 60 dB
Input selector: suppression of unwanted inputs: better than 60 dB
Crosstalk: adjustable; in stereo position: -40 ... -50 dB, 100 Hz ... 10 kHz
Current consumption: approx. 200 mA (10 V)
Distortion, as a function of the output voltage from the input selector stage: see graph A

Tone control characteristics: see graph B

A block diagram of the preamp and control unit is given in figure 1. The input selector, with inputs for four signal sources, is followed by a tone control that provides bass lift, presence (middle lift), treble cut, or a flat response. (It should be noted that the touch control panel shows a symbol which could be interpreted as 'treble lift' in the fourth position.) The signal is then fed into a circuit that controls the image width from mono to 'enhanced stereo' by introducing crosstalk between the channels. The signal is fed finally to a volume control that provides four preset gains.

The disc input must be preceded by a suitable RIAA-equalised preamplifier, which may be mounted in the control unit, but preferably in the record deck as this will give better hum figures and (provided the disc preamp has a low output impedance) the frequency response will be unaffected by cable capacitance.

The TAP, which controls all the functions, is shown in figure 2. Its operation was described in detail in last month's article, but basically, touching any one of the inputs causes the corresponding output to become '1' and all the other outputs to become '0'. Only one Q output can be '1' at any time. The Q outputs of the TAP are connected to the corresponding Q inputs of the input selector, tone, width and volume controls.

The Input Selector
The input selector of figure 3 makes use of the electronic 'break contact' de
scribed in last month's article to short out the unwanted signals. When one of the inputs 1-4 is selected the corresponding transistor (T1-T4) is turned on. The corresponding pair of transistors for left- and right-hand channels (T5/T6-T11/T12) are turned off so that the desired signal can reach the base of T15 and T16. All the other pairs of transistors are turned on and short the unwanted signals to ground.

The presets on each input allow adjustment of input sensitivity and channel balance to correct channel imbalance in the signal sources. The channel balance of the preamplifier itself may be adjusted by presets in the volume control stage.

The Tone Control

The tone control circuit is shown in

Figure 1. Block diagram of the complete touch-controlled preamplifier consisting of input selector, tone, stereo image width and volume controls. The four units each have a nominal gain of one, so any unit or units may be omitted without effecting the sensitivity.

Figure 2. Circuit of the four-position TAP. Touching one of the inputs causes the appropriate output to become '1'. The 0 outputs are used to control the preamplifier functions.

Figure 3. Circuit of the input selector. T13 and T14 provide additional amplification for low-output tuners and can be dispensed with if not required. Presets R27-R34 are used to adjust for the same nominal output for all signal sources. For high-level inputs the value of these presets can be increased to 1 MΩ.
It consists of input and output buffer amplifiers T13-T16 with three switched filters for bass lift, presence and treble cut interposed between them. The circuit operates as follows:

T5/T6 and T7/T8 act as normally closed (break) contacts. T9 and T10 are omitted as they correspond to the flat position (position 3) where no filter is in circuit. When position 1 (bass boost) is selected T5/T6 and T11/T12 are turned off while T7/T8 are turned on. This means that C5, C6, R55 and R56 are shorted out and C7 and C8 are open-circuited. A filter as shown in the simplified circuit of figure 5 thus appears between the two buffer amplifiers. This boosts frequencies below 400 Hz.

When position 2 (presence) is selected T5 and T6 are turned on, shorting out C1 and C2, whilst T7/T8 and T11/T12 are turned off. This connects the filter of figure 6 in circuit. This is a band-pass filter, which boosts the signal over the range 200 Hz to 4 kHz, with a maximum mid-band boost of about 10 dB. Position 3 is the flat position with T5/T6 and T7/T8 turned on and T11/T12 turned off. The circuit of figure 7 therefore results, which is of course simply an attenuator with no frequency-dependent characteristics. In position 4 (treble cut) all the transistors T5-T12 are turned on and the circuit of figure 8 results. At frequencies away from those at which the filters have their effect the nominal gain is one in all positions. This ensures that switching from one filter position to another does not result in large changes in volume.

Stereo Image Width Control

This control alters the separation between channels by introducing crosstalk from one channel into the other. The image width may be varied from a mono signal, where each output channel contains an equal proportion of left and right inputs, to 'enhanced stereo', where crosstalk is introduced in antiphase to increase the image width beyond that of normal stereo. The circuit (shown in figure 9) operates in the following manner:

T13 and T14 function as a difference amplifier. That is to say that the signal
appearing across their collectors is proportional to the difference between the left and right input signals to their bases. If, for example, the right input is grounded and the left input is fed with a signal then the signal on the collector of T14 is proportional to the left input and 180° out of phase with the signal on the collector of T13. The same argument holds true if the left input is grounded. When both inputs are driven the outputs at the collector of T13 and T14 consist of left channel with a proportion of antiphase right channel and right channel with a proportion of antiphase left channel. That is to say, the crosstalk appearing in the signal at the collector of T13 is 180° out of phase with the right channel signal appearing at the collector of T14 and vice versa.

In-phase crosstalk may be introduced into these signals by mixing with the opposite channel at the base of T15 and T16 respectively. When no in-phase crosstalk is introduced the signals appearing at the collectors of T15 and T16 consist of the original signal plus the antiphase crosstalk and the image width is increased. When the proportion of in-phase crosstalk is the same as the proportion of antiphase crosstalk the two cancel and only the original signal remains. This is normal stereo. When the in-phase crosstalk exceeds the antiphase crosstalk the net result is a proportion of in-phase crosstalk and the stereo image width is reduced; finally, when the crosstalk equals the signal a mono output results.

When position 1 (mono) is selected transistors T7-T12 are cut off. This means that crosstalk from the collector of T14 is fed into the base of T15 together with the left channel signal from the collector of T13 and vice versa. When position 2 (reduced width stereo) is selected T9 and T10 are turned on. When T9 and T10 are turned off, neutral R37 and R38 respectively. R51, R37 and R52, R38 thus form attenuators that reduce the amount of in-phase crosstalk. The same applies to position 3 (normal stereo) when T9 and T10 are turned on, but R39 and R40 are chosen so that the in-phase crosstalk equals the antiphase crosstalk and the two cancel. R39 and R40 may be replaced by presets so that the circuit can be trimmed to cancel the crosstalk exactly. In position 4 T11 and T12 are both turned on and the in-phase crosstalk signals are shorted to ground leaving only the original signals plus the antiphase crosstalk. This results in an enhanced stereo image width.

Looking at the operation of the circuit mathematically we can derive the following:

- Ignoring the gain of the difference amplifier, which affects all components of the signal equally, we can say that

\[L_c = -L + k_1 R \]

where \(L_c \) is the signal at the collector of T13, L and R are the left and right inputs and \(k_1 \) is a constant determined by the parameters of the difference amplifier. Similarly

\[R_c = -R + k_1 L \]

The minus signs are due to the 180° phase change in T13 and T14 respectively. After mixing with in-phase crosstalk the signals appearing at the collectors of T15 and T16 (again ignoring the gain, which affects all components of the signal equally) are

\[L_0 = -L_c - k_2 R_c, \]

and

\[R_0 = -R_c - k_2 L_c \]

where \(k_2 \) is a constant whose value is selected by switching in the different attenuators that introduce varying proportions of in-phase crosstalk.
For enhanced stereo there must be only antiphase crosstalk, i.e., \(k_j = 0 \).

Therefore
\[
L_0 = L - k_1 R + k_2 R - k_1 k_2 L
\]
\[
= L (1 - k_1 k_2) + (k_2 - k_1) R
\]

was chosen subjectively and it was found that a value of 6 dB (\(X \frac{1}{2} \)) of antiphase crosstalk gave the best results. This immediately gives some of the values for \(k_2 \).

For a mono signal the proportions of \(L \) and \(R \) in the output must be equal, i.e.,
\[
1 - k_1 k_2 = k_2 - k_1
\]
which means that \(k_2 = 1 \).

For a normal stereo signal the crosstalk must be zero, i.e.,
\[
k_2 - k_1 = 0
\]
which means that \(k_2 = \frac{1}{2} \).

For enhanced stereo there must be only antiphase crosstalk, i.e.,
\[
k_2 = 0.
\]

The value of \(k_2 \) for a reduced width stereo signal (position 2) is purely a mat-
Volume Control

This was discussed briefly in last month's article and the complete circuit is given in figure 10. Selecting one of the positions turns on the corresponding pair of transistors T5/T6/T11/T12, grounding the potentiometers connected to each collector. These form attenuators with R51 and R52 which control the levels of the signals fed into the bases of T15 and T16 respectively. The degree of attenuation produced in each position may be altered by the potentiometers to suit personal taste and to adjust the channel balance.

Construction and Adjustment

The four units described are each constructed on a universal printed circuit board, the pattern for which is given in figure 11. The component layouts for the different units are detailed in figures 12-15 and the parts lists are given in the tables 1 and 2. The components common to every board are given in table 1 and those particular to one unit are given in table 2. The capacitors marked * in figures 4, 9, and 10 may be omitted if all 4 boards are used together but should be included if any board is used on its own.

Setting up of the units is a simple matter. The input potentiometers of the input selector stage are adjusted so that the output of this stage is about 100 mV when fed with the nominal signal level of each source. Thus, if the system is to be used with a tuner of nominally 100 mV output the tuner input should be adjusted with 100 mV input signal from an oscillator. If no test equipment is available the circuit may be adjusted using the actual signal sources (disc, radio, tape, etc.) and listening on headphones each input potentiometer may be adjusted to give approximately the same volume level. Balance between channels should also be adjusted to compensate for im-

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures 3, 12</td>
</tr>
<tr>
<td>Resistors:</td>
</tr>
<tr>
<td>R17, R18</td>
</tr>
<tr>
<td>R19, R20</td>
</tr>
<tr>
<td>R21, R22</td>
</tr>
<tr>
<td>R23, R24</td>
</tr>
<tr>
<td>R27, R28</td>
</tr>
<tr>
<td>R29, R30</td>
</tr>
<tr>
<td>R31, R32</td>
</tr>
<tr>
<td>R33, R34</td>
</tr>
<tr>
<td>R35, R36</td>
</tr>
<tr>
<td>R37, R38</td>
</tr>
<tr>
<td>R39, R40</td>
</tr>
<tr>
<td>R41, R42</td>
</tr>
<tr>
<td>R43, R44</td>
</tr>
<tr>
<td>R44, R47</td>
</tr>
<tr>
<td>R45, R50</td>
</tr>
<tr>
<td>R46, R49</td>
</tr>
<tr>
<td>R51, R52</td>
</tr>
<tr>
<td>R53, R54</td>
</tr>
<tr>
<td>R55, R56</td>
</tr>
<tr>
<td>R57</td>
</tr>
<tr>
<td>R58, R59</td>
</tr>
<tr>
<td>R60</td>
</tr>
<tr>
<td>R61, R62</td>
</tr>
<tr>
<td>R63, R64</td>
</tr>
<tr>
<td>R64, R65</td>
</tr>
<tr>
<td>R69, R70</td>
</tr>
<tr>
<td>R71, R72</td>
</tr>
<tr>
<td>R73</td>
</tr>
</tbody>
</table>

(X = omitted; — = wire link)

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors:</td>
</tr>
<tr>
<td>R1, R4, R7, R10 = 1 M</td>
</tr>
<tr>
<td>R2, R5, R8, R11 = 10 M</td>
</tr>
<tr>
<td>R3, R6, R12 = 1 M</td>
</tr>
<tr>
<td>R13, R14, R15, R16 = 27k</td>
</tr>
</tbody>
</table>
balance in the signal sources. The volume control settings are next adjusted to give the desired listening levels. Channel balance may also be adjusted to compensate for any imbalance in the preamplifier itself or in the power amplifier and loudspeakers. The unit is now ready for use.

The output level is 200 mV; if this is insufficient for full drive of the power amplifier, R61 and R66 (figures 10 and 15) can be increased to 4k7. The output level then becomes 1000 mV.

Conclusion

All the units in the touch-controlled preamplifier have a nominal gain of unity and so may be used in any combination without affecting the performance, or they may be used in conjunction with other equipment. It is
hoped in a later article to publish details of a touch station selector for radio and other additions to the system.

Design Modification
A small modification has been made to the portions of the circuit using the ‘break contact’. Referring to figure 6 of last month’s article, when T1 is turned off there is still a residual current of about 6 mA flowing through the LED via R3, R4 and the base-emitter junctions of T3 and T4. With certain types of LED, notably those with a clear plastic encapsulation, this may give rise to a noticeable glow. This can be eliminated by connecting a 220Ω resistor across the LED. Current will flow through this resistor but the voltage drop across it will be less than the turn-on voltage of the LED. This modification applies to the following: figure 3, D13-D16; figure 4, D13 and D14.
supplies for cars

In order to function effectively, electronic equipment used in cars must have an appropriate power supply, which in addition to providing a regulated voltage from the battery supply, must also suppress interference appearing on the battery voltage from the car electrical systems. To be effective, such power supplies must of course be used in conjunction with the measures described elsewhere in this issue for the suppression of radiated interference at source.

Two power supplies will be described; a simple zener stabilizer with built-in suppression, for low-power circuits such as instruments (electronic tachometer etc.) up to about 170 mA and a high-power stabilized supply, for powering such things as portable cassette recorders, up to about 2 A.

Low-power circuit

Figures 1 and 2 show the low-power circuit configuration for negative- and positive-earth cars respectively. L1 and D1 provide high-frequency decoupling. L1 may be wound on a wire-ended cylindrical ferrite core, with a diameter of about 10 mm, using 45 turns of 0.5 mm enamelled copper wire (25 SWG). Zener diode Z1 stabilizes the output voltage at 5.6 V, which is suitable for TTL circuitry, but 5.1 V or 4.7 V types would also do, as they are within the supply voltage limits for TTL. Other voltages may, of course, be used for different equipment.

If a supply voltage is required that is almost equal to the available battery voltage, then R1 and the zener diode may be omitted. Of course, the circuit will then not provide stabilization of the supply voltage, but only interference suppression. This would be quite adequate for COSMOS IC's, which are fairly tolerant of supply voltage variations.

The difference between battery voltage and output voltage is dropped across R1. In the example given, for a 6 V battery R1 would be 8.2 ohm ¼ W, and for a 12 V battery 47 ohm 2 W. C2 should be a low-inductance type such as ceramic and D1 can be any diode that will carry 200 mA.

High-Power Circuit

This circuit (figure 3) is designed to provide a stable, interference-free supply for cassette recorders, audio amplifiers and other equipment. Car radios generally have their own built-in suppression circuits.

The circuit is a simple feedback stabilizer. T5 and T6 form a differential amplifier with a constant-current emitter load (T7). This compares a portion of the output voltage at the slider of P1 with a reference voltage provided by D6. T3 provides a constant current through this zener diode. T4 is a constant-current load for the collector of T6, which drives the Darlington-connected transistors T8 and T9. Current limiting is provided by T1 and T2. When the current through R4 is such that the voltage drop across it exceeds the base-emitter voltage of T1, this transistor turns on, which turns on T2, pulling down the collector of T6 and reducing the drive to T8. The maximum output current required determines the value of R4:

\[R_4 = \frac{0.5}{I_{\text{max}}} \quad (\Omega) \]

L1 is wound from 45 turns of 1.0 mm copper wire (19 SWG) on a ferrite core and thus provides interference suppression due to its high inductance. P1 will adjust the output between about 5.6 V and 12 V, although the higher figure can only be obtained when the (12 V) car battery is fully charged and in good condition, so that the supply voltage is around 14 V, since some voltage must be dropped across the series regulator transistor and R4.

A printed circuit layout for this supply is given in figure 4. The connections shown encircled in figure 3 are shown on the board layout. The circuit of figure 3 is for use with negative earth cars, but may be modified for positive earth simply by reversing all diodes and electrolysic capacitors and replacing transistors by their complementary equivalents.

If higher output currents are required, an external transistor (e.g. MJ3055) can be added. The connections to this transistor (110) are shown dotted in figure 4; it should be mounted on an adequate heatsink, with mica washers for isolation.

If this transistor is not required, the connections 5 and 6 on the pcb must be bridged.

To avoid deterioration of the board in the car due to humidity and dirt it is best to encapsulate the circuit (once it has been tested) in epoxy resin or silicone rubber.
Parts list for figures 3 and 4:

Resistors:
R1 = 1 k
R2 = 470 Ω
R4 = 0.22 Ω
R5 = 27 k
R6 = 68 Ω
R7 = 180 Ω
R8,R11 = 100 Ω
R9 = 2k7
R10 = 15 k
P1 = 10 k, preset

Capacitors:
C1,C3 = 1000 μF/25 V
C2,C4,C5 = 47 n

Semiconductors:
T1,T3,T4 = TUP
T2,T5,T6,T7 = TUN
T8 = BC107 or equ.
T9 = BD131 or equ.
(T10 = M.J8055 or equ.)*
D1 = 6V 126
D2...D5 = 1N4148
D6 = 5.6 V/250 mW zener

Coil:
L1 = 45 turns of 1.0 mm enamelled copper wire on 10 mm Ø ferrite former.

* see text

Figures 1 and 2. Simple zener stabilized supply with high-frequency suppression. Figure 1 is for negative earth and 2 is for positive earth.

Figure 3. A high-power regulated supply for car electronics. The output voltage may be adjusted from 5.6 V to 12 V and the circuit will supply 2 A continuously.

Figure 4. P.c. board and component layout for the circuit of figure 3.
mos-clock

The mos-clock described in Elektor 1 has been extended with a crystal time base and an emergency supply. These extensions do make the clock a bit more expensive, but they are at the same time elements changing the clock into a highly-accurate and universal instrument. Furthermore, the total extra current consumed by these extensions is practically negligible. Both the emergency supply and the crystal time-base are mounted on one printed circuit board.

In recent years especially, the mains voltage has been liable to cut out momentarily (or even for quite some time!). Depending on the capacitance of the electrolytic in the power supply, the d.c. voltage driving the clock will have disappeared after about 200 ms. The clock will then forget what time it is, so that it must be reset. This is in itself not such an enormous problem, but a number of brief failures in one day could be annoying!

The emergency supply circuit described here uses a 9-volt battery. This provides an emergency drive for about 20 hours; a period within which even the most serious mains breakdown will have been repaired. The emergency drive also offers the possibility of moving the clock from one room to another without it stopping.

Design
As the clock-IC MM5314 consists of one monolithic MOS circuit, its current consumption can be neglected in comparison with that of the displays. At 15 V the total current consumption of the clock is about 250 mA, 240 mA of which is drawn by the displays. This is one of the reasons why the clock-IC is provided with a so-called strobe input (pin 1 of the IC) which is '1' when the clock is running normally. If, however, the strobe input is made '0', the display is suppressed, and only the divider circuits and the memory still draw current.

These circuits still function satisfactorily at a supply voltage of 7 V.

So for an effective emergency supply from a small battery it is essential that as soon as the normal supply cuts out, the strobe input becomes '0' so that current consumption drops to about 8 mA. Of course, it must be possible to switch on the display circuits now and again on the emergency supply. A circuit which provides for this is given in figure 1.

If the mains voltage is available, the circuit is driven via point BS from the secondary of the transformer. This point is indicated on the clock P.C. board. The transformer secondary voltage on BS is rectified via D1, so that capacitor C1 is charged. Then transistor T1 is driven into saturation via resistor R1. The collector voltage of this transistor is then so low that transistor T2 is not driven. Via resistor R4 and push-button S1 the collector of T2 is connected to the strobe input of the clock-IC. This point (SB) is also indicated on the clock p.c.b. When transistor T2 is off, the strobe input of the clock-IC is connected to a relatively high-impedance load so that it 'sees' a '1', causing the displays to light up.

If, however, the mains voltage cuts out, point BS in figure 1 no longer carries a voltage, and C1 discharges so rapidly that transistor T1 is cut off within 5 ms. Now the base of T2 is driven via resistors R2 and R3, so that its collector-to-emitter resistance drops to about 200 ohms. As a result point SB becomes '0' via resistor R4 and the supply for the display circuits is cut off inside the clock-IC.

![Figure 1](image1)

![Figure 2](image2)
When button S1 in figure 1 is depressed, the strobe input of the clock-IC becomes ‘1’ again and the displays light up. Instead of a push button, a single-pole switch can be used for S1.

Practical version
For the emergency supply, only a battery with a series resistor need be connected across the supply electrolytic capacitor of the clock proper. Figure 2 shows the detailed connection of the battery: the extra battery and the series resistor RS are in parallel with the supply elco. A so-called minipower pack will do as the battery. The design of the p.c.b. is based on this type of battery. Two alternative arrangements are also possible. The first is to replace R5 by a diode, with the anode connected to the battery and the cathode connected to the supply rail. This has the advantage that the full battery voltage is available to drive the displays for short periods on emergency drive. However, it also means that no ‘refresher’ current runs through the battery when the mains is on.

Perhaps the best arrangement of all is to replace R5 by a diode, as above, and add an extra resistor of 100 kΩ in parallel to the diode. This will trickle-charge the battery.

In all cases it is advisable to check the battery condition occasionally (by disconnecting the mains). This is particularly important when ‘dry’ batteries are used — they sometimes become very wet after a period of time, as many owners of portable radios and torches have discovered to their cost.

Crystal timebase
Although the standby supply will maintain the information in the memory of the clock in the event of a mains failure, the counting circuits will not operate in the absence of a 50 Hz signal. This is where the crystal timebase comes in. It ensures good timekeeping accuracy (approx. 10 seconds per month) and makes the drive to the clock independent of the mains.

| Table 1. Some specifications of the Intersil IC type ICM 7038 A. |
|-----------------|-----------------|
| supply voltage | 1.6 V ... 4 V (max. 5 V) |
| current consumption | 60 μA (Vb = 2.2 V); 130 μA (Vb = 3.6 V) |
| output resistance | 230 Ω both for p- and n-output |
| minimum oscillator frequency | 1 MHz |
| maximum oscillator frequency | 10 MHz |
| power dissipation | 300 mW maximum |
| input voltage oscillator | ≤ Vb |
| case temperature | -20°C ... +70°C maximum |
| ambient temperature | +20°C .. +70°C |
| output voltage | ≤ Vb at all outputs |
| output current at Vb = 0 | 80 mA maximum |
| 400 Hz output current | 30 mA maximum |
| 400 Hz output resistance | 200 Ω (I = 3 mA) |

Figure 3. The Intersil type ICM 7038 A comprises a 16-stage divider and a crystal oscillator. For the oscillator only the crystal and two capacitors need be connected externally. The IC is built up from complementary MOS-oscillators, so that the power dissipation is extremely low.

For this crystal time base use is made of a complementary MOS IC which, besides an oscillator, also comprises the dividers necessary for obtaining the 50 Hz square-wave voltage with which the clock is driven.

Figure 4. The external connections of the ICM 7038 A. Owing to the COS/MOS properties, it is always advisable to use a base or socket for this IC.
The most important specifications of the ICM 7038 A are given in Table 1. The low supply voltage (1.6...4 V) and the low current consumption (average 90 μA) are worthy of note. Figure 4 gives the pin connections of the ICM 7038 A.

The circuit
Figure 5 shows the circuit diagram of the complete time base. Since the clock supply lies between 8 V and 18 V, a special circuit must be provided which ensures that the time base IC gets no more than 5 V. The simplest solution is shown in Figure 5: the IC is fed via a resistor R6, and an electrolytic capacitor C4 is connected across the IC. The diodes D2...D6 ensure that the supply voltage can never rise above about 3.5 V.

In Figure 5 the capacitors C2, C3 and the crystal are the external components for the oscillator. The crystal must be a type that has been ground for parallel resonance with an external parallel capacitance of 12 pF nominal. For 50 Hz output reference the crystal frequency must be 3.2768 MHz. The oscillator can be adjusted with capacitor C2.

Transistor T3 has been included in the circuit to make the output voltage of IC1 suitable for clock drive. The collector of this transistor is connected to point X on the clock p.c.b., after which resistor R22 (100 k) is removed.

The printed circuit board
Figure 6 shows the lay-out of the printed circuit board on which the circuits of Figures 1, 2 and 5 can be mounted. The component arrangement of these circuits is given in Figure 7. Figure 8 shows a photograph of the board. It can be mounted on the mains transformer on the original clock board.
The 'cybernetic beetle' is the first of a series of articles in 'Elektor' on designs which are on the other hand meant to be a game, but which on the other hand should be regarded as serious and sometimes scientific imitations of animal behaviour.

These cybernetics projects have an electronic 'nerve system' enabling them to react specifically to external acoustical, optical and tactile stimuli. Such models can moreover be designed so that the reactions are not only governed by the type of stimulus, but also by the condition of the model at the moment when the stimulus is applied. The more 'natural' the relationship between the stimulus and the relevant reaction, the more the behaviour of the model approaches that of the animal example and the more will an ingenious toy become a scientific object.

It was found to be extremely difficult to imitate the behaviour of more highly developed animals in a cybernetic model, because an electronic nerve system can only perform a limited number of functions. Experiments on a scientific basis therefore confine themselves to certain aspects of behaviour or to living models of a very simple nature.

Although the nature of the nervous system is as yet unknown, it is interesting to see that at any rate the models behave in a typically animal-like way so that their reaction to a certain stimulus cannot be predicted.

These cybernetic models derive their attraction from the fact that the spectator unconsciously interprets the purposefulness or the learning capacity of artificial animals as a sign of intelligence. Here the question immediately arises whether it is possible to build a 'thinking' machine.

It would carry us a little too far to use this series of articles for entering into these undoubtedly highly interesting and topical problems. The cybernetic aspects of the electronic animal models will, however, be dealt with more extensively. (Ed.)

H. Ritz

The word 'cybernetics' which has in recent years taken a permanent place in our vocabulary, is of Greek origin and means approximately 'art of steering'. The Greeks used it to denote the skill of a pilot who steered a ship safely into harbour. At present the term denotes a new branch of science which still has something to do with the art of steering.

In 1948 Norbert Wiener founded this branch when he wrote his 'Cybernetics— the science of control and communication, in the animal and the machine'. The title of this book already shows that the sphere of influence of cybernetics encompasses all dynamic systems, both natural and artificial. For a cybernetic investigation of such systems it is irrelevant of what material they are made and by what force they are driven. The only thing that matters is the abstract system detached from all technical details.

It will therefore be clear that cybernetic investigations may also concern other dynamic systems, such as economics, but of course it is technology that profits most by cybernetics.

It is the different ways in which the dynamic systems behave that are of interest to cyberneticians. The behaviour of living organisms is then frequently compared with that of a technical imitation, a model.

A toy train driven by a spring motor running in circles on its rails is a dynamic system. Yet, this model track is of no interest to cyberneticians, because no behavioural pattern can be observed. A system which has to develop certain behavioural patterns must also have a few properties other than dynamic ones only, viz.:

1. It must be able to receive external information coded in signals;
2. It must be able to store this information and hence have a memory;
3. It must be able to convert stored information into reactions. These reactions must be controlled, which means that external interference must always be effectively reacted to. Reactions do not conform to a previously fixed programme, but are always compared first with previous reactions and their results. All cybernetic control systems are based on this feedback principle.
4. Because they are capable of self-correction, cybernetic systems always display a purposeful behaviour.
5. Cybernetic systems are stable. By this we mean a dynamic stability which enables the system to return to a certain situation after a breakdown. Non-cybernetic machines cannot cope with external interference. They only function if possible causes of interference are known beforehand and if the appropriate countermeasures have been incorporated in the machine.

A cybernetic machine, on the contrary, can also deal with interference not previously taken into consideration.

6. Higher-level cybernetic systems can 'learn'. They can adapt their behaviour if experience gained gives them cause for doing so.
The behaviour of the beetle: action and reaction

In daylight (vertical light) the model moves slowly forward in a circle (counter-clockwise) with a diameter of approx. 80 cm. If during its journey the beetle arrives in a place where there is less light (for instance in a dark corner or below a chair), it rests in the shade for approx. half a minute to a full minute and then resumes its circular journey.

It is also possible that, instead of continuing the model decides to take a prolonged rest in the shade: it 'falls asleep'. This condition of prolonged rest can only be altered by external stimuli. The object casting the shadow is removed or the model is wakened by a loud sound (clapping). If the beetle 'sees' a horizontal light source on its journey, it makes a beeline for it. Any deviations from its course are automatically corrected.

If the model hits an obstacle on its path, it gives a brief cry of fright and immediately shrinks back. This reverse movement is, however, preceded by a short turn, so that when the beetle resumes its forward movement after 3-4 seconds, it is positioned obliquely with respect to its previous direction of travel. The beetle can now no longer see the light source, it again starts a left turn, which results in a second collision with the obstacle, somewhat more to the left than the first time. Thus, after a few repetitions, extensive obstacles are also dodged, after which the beetle heads for its goal (phototropism).

When the horizontal light source is reached, the model will collide with it and the above-mentioned swerving movements will follow. As a result, the model will find its way behind the light source. If this horizontal light source does not emit light backwards and if there is also a shaded area at the rear of the lamp, the model goes behind the lamp to enjoy a short or prolonged period of rest.

The model can also learn. If at the moment of the collision a warning sound (clapping) is made, the model concludes that the collision (pain) and clapping belong together. For this reason, if a warning sound is made when the model is moving forwards, it will now first give a cry of fright and then perform the same swerving movement which would otherwise be performed in the case of an actual collision.

The memory fades, however, during a rest in the shade. After such a pause the model hesitates briefly when the warning sound is made; it listens for a moment and immediately after the hand-clapping the forward movement is resumed.

In general this simple cybernetic model behaves in a typically animal-like way. It can move, see, hear, feel, it reacts efficiently to certain external interferences, acts purposefully and has also certain reflexes in addition to the senses of touch and hearing.

Things become even more interesting if two models are available, each with a light source on its back. If moreover the cry of fright of one beetle is tuned to the warning sound of the other, an exchange of experience may take place. The innumerable possibilities of searching, pursuing and swerving guarantee an interesting course of experiments.

As is indicated by dashed lines in the block diagram (figure 1) a 'bugger' sensation can be added. This part immediately interrupts a journey or a period of rest when the battery voltage drops below a certain minimum. The model then heads for a second lamp placed near a charging unit. If on the way to the charging unit the beetle starts to use less current for some reason, it records that sufficient energy is still left to resume the normal search for the first lamp. If this effect is undesirable, a flip-flop can be used instead of gates N_{1g}/N_{4g}. After charging the reset function must be performed by hand.

For demonstrations it is advisable to use a potentiometer as supply control; the beetle's 'bugger' may then be artificially generated by increasing the potentiometer's resistance.

The various functions

The drive motor (DM) runs only if the vertical-light receiver (VLR) receives light from above and the warning receiver (WSR) does not receive sound, or, in darkness, if a short rest (SR 40 sec.) initiated by the VLR has elapsed and the flip-flop (LR) for a prolonged rest is not in 'prolonged' position. A warning sound makes the motor stop briefly and trips the flip-flop for prolonged rest. Furthermore, the drive motor starts running if a warning unit (BW) detects a drop in battery voltage. (The latter applies only if the relevant control unit consisting of a sensor, a change-over switch COS, and a receiver for the light from the charging unit (CLR) has been incorporated.)

When an obstacle is touched (OS close) CF 1/2 sec. changes over to cry of fright and $R_{M} \times 3$ sec. to reverse movement. CF 1/2 sec. starts the cry of fright by means of an oscillator (FO). $R_{M} \times 3$ sec. switches the drive motor to position 'reverse' by means of a relay (RRL). CF 1/2 sec. also 'enables' the memory flip-flop (MFF) for half a second, i.e. it renders the flip-flop able to receive a triggering signal. The memory flip-flop (MFF) is switched on if within this time a pulse from the warning-sound receiver (WSR) reaches MFF. Once MFF has been set, a warning sound causes CF 1/2 sec. and $R_{M} \times 3$ sec. to be activated via a...
NAND network. This reaction is switched off by SR 40 sec., which resets MFF.

The light receiver for horizontal light (HLR) switches the steering wheel to its central position via a change-over switch (COS.) and the steering motor (SM). The change-over switch furthermore ensures that after the collision with the obstacle the reverse movement starts with a short turn.

If the automatic "hunger sensation" is built in, connection A runs through change-over switch COS2. In this way it is ensured that at a given voltage the steering motor is no longer operated by the light receiver HLR, but by the light receiver for the charging unit CLR (via COS2 and COS1).

Light receivers

The circuitry of the three light receivers is identical (figure 2). Each consists of a NAND gate with a voltage divider consisting of two resistors and an LDR at the input. When illuminated, the LDR has a very low resistance, so that the NAND input is logically '0' and the output is logically '1'. In the absence of light, the resistance of the LDR is high. The NAND input is at positive potential and the output is at low potential (logically '0').

The LDR for vertical light (VLR) is mounted on the model's back. The output of the relevant receiver circuit controls the period of rest (SR 40 sec.). The LDR of the receiver for horizontal light (HLR) is accommodated in a black cylinder, approx. 10 cm long, together with a converging lens. In the model this "viewing tube" is fitted horizontally and pointing forwards. If light from the light source reaches the LDR, the output of the receiver becomes logic '1'.

Via the change-over switch(es) (COS2 and) COS1, the receiver HLR controls the steering motor of the model.

The LDR of the receiver for the light from the charging unit must be screened from other light by means of a cylinder and, for instance, be fitted to the underside of the model so that only light from the charging unit can be received.
over switch COS₂ is controlled by the output of the charging light receiver CLR.

The warning receiver WSR
To prevent the beetle from reacting to any arbitrary external noise, the receiver must be selective. The 'clap sensor' of figure 3 is eminently suitable. It consists of a preamplifier (T₁), a selective amplifier with twin-T network (IC₃), a rectifier circuit (D₁, D₂) and a trigger circuit (N₁, N₂). In the digital part of the model (figure 5) the output of the trigger is followed by a one-shot (IC₄) set by clapping once. This one-shot can be considered as part of the receiver WSR in figure 1.

The fright oscillator FO
An astable multivibrator consisting of two NAND gates constitutes the fright oscillator (figure 4).
Switch S is the on/off switch. In the model the output of a one-shot replaces this switch. The LF output drives a low-power audio output stage.

The complete circuit
The description from the behavioural pattern shows that the model may move when sufficient light falls from above. In the absence of vertical light the model may only move if the flip-flop LR for the period of rest is in position Q = '1' and if furthermore the circuit for the pause in the shade SR 40 sec. is reset (Q = '1').
These two possibilities are checked by the AND circuit consisting of N₃ and N₆ (AND₁) and the subsequent OR circuit (N₈, N₉ and N₁₀).
Furthermore the model may not move when the sound receiver WSR receives a signal which makes the Q output a logic '0'. This condition is combined with the conditions previously mentioned by means of N₄ (AND₃). The output of N₄ is only a logic '0' if the conditions for moving have been fulfilled and no warning sound is received, because only in that case are the two inputs of N₄ logically '1' and the output logically '0'.
The flip-flop for a prolonged period of rest LR is tripped by output Q of the warning sound receiver (IC₁₂) at every clap. For this reason the model will sometimes rest for the normal period (SR 40 sec.) and at other times will not move on after the SR time has elapsed. Instead, it will fall asleep.
If the model hits an obstacle, impact contact OS is closed, and the monostable CF is triggered (IC₁). For half a second output Q changes from '1' to '0', so that the fright oscillator (N₁₃, N₁₄) starts and produces a LF signal which is made audible via an amplifier stage (T₁₁, T₁₂) and the miniature loudspeaker. The 'impact pulse' simultaneously switches the one-shot RM (IC₂). Its output Q changes from '0' to '1' for 3 seconds. Reversing relay RRL is switched on via a power amplifier (T₁₃); the
that the reverse movement is started with
a turn (0.5 sec., determined by CF via
N9), after which the movement is con-
tinued in a straight line backwards for
another 2.5 sec. Then the relay lets go
and the model starts moving forward
again in a circle.

The memory flip-flop (MFF, IC9) has an
input J connected to the Q output of CF.
Every collision causes J to become '1'
for 0.5 sec. If within this time a warning
sound is heard the output Q of MFF
changes to '1'. Consequently a negative
pulse occurs at the output of N12 every
time a clap is heard, which causes the cry
of fright and the reverse movement even
within a collision occurring (reflex).

When the beetle reaches in the shade MFF
is reset via the 'clear' input (Q = '0'). The
memory has now been erased, so that a
warning sound can only change over LR
and cause the model to stop briefly (via
N7).

As the time available for the reception
of information by MFF is fairly short
(0.5 sec.), it is often difficult to set the
flip-flop by means of clapping. This is
similar to a normal learning procedure,
where it may also happen that only the
second or even third combination of a
warning sound together with the collision
results in the desired reaction.

The circuit for a rest in the shade SR
also comprises a one-shot (IC10) which in
this case is controlled by the receiver
for vertical light VLR via gate N1. The motor
is stopped for 40 sec. via N5 ... N7, N9
and N12, provided that meanwhile the
model does not receive any light from
above. The circuit for 'hunger' comprises
among other things a threshold-value
detector consisting of P1 and N16. P1 can
be set so that the input of N16 becomes
logically '0' if the operating voltage has
dropped to such a level that the accumu-
lator must be recharged or the battery
must be renewed. There must be suffi-
cient energy left, however, to enable the
beetle to reach the 'food station'. Because
the life of the beetle is in danger when
the voltage drops, protective functions,
such as rest and panic stop are of second-
ary concern and are therefore cut out.
The motor runs constantly via N15 and
N2.

The output of N16 (in COS3) is '1',
whether there is horizontal light or not.
As long as no collision occurs, only the
receiver for the charging light (CLR)
affects the steering motor via the input
of gate N19 controlled by N20. A collision
is dealt with as usual; the effect of CLR
is then cut out for 3 seconds.

The mechanical construction
A commercially-available servomotor
(max. 3 V) for model planes is eminently
suitable as a steering mechanism. The
motor must automatically return to its
central or zero position. Building-in
should be done at the front of the model,
on the centre-line of the bottom plate
(see figure 6). The motor must be fitted
with approximately 20° slant to the left,
so that the model describes a left turn
model moves backwards for approx.
3 seconds and thus moves away from
the obstacle. The Q output of CF and the
Q output of RM control gate N4 in
change-over switch COS2. During for-
ward movement the inputs of N9 are at
'1' and '0', so that the output is logically
'1'. As the input of N10 controlled by
RM is at '1' in this case, the steering
motor is switched on (straight ahead),
via N11, T3 and T4, if the second input
of N10 is also logically '1' and conversely.
The signal to this second input does not
affect the steering however, during the
reverse movement for 3 seconds because
the Q output of RM is '0'. This means
Parts list for figure 5.

Resistors:
- R1, R6, R22 = 2kΩ
- R2, R3, R7, R24 = 100 Ω
- R4, R9 = 1 kΩ
- R5, R16 = 1 kΩ preset
- R9 = 56 Ω
- R10, R13, R20 = 560 Ω
- R11, R14, R21 = LDR
- R12, R15, R22 = 10 kΩ preset
- R17, R18 = 470 Ω
- R19 = 820 Ω
- R25, R26, R27, R28 = 50 kΩ preset
- P1 = 2 kΩ lin

Capacitors:
- C1, C2 = 1 μF (not electrolytic)
- C3, C4, C5 = 100 μF/10 V
- C6 = 10 μF
- C7 = 1000 μF/10 V
- C8 (see Text) = 220 μF/10 V
- C9 (see Text) = 10 nF

Semiconductors:
- D1, D2 = DUS
- T1, T3, T6 = TUN
- T2, T4, T5, T7 = BD 137

IC’s:
- IC1, IC2, IC10, IC12 = 74121
- IC3, IC4, IC5, IC8
- IC9, IC11 = 7400
- IC7 = 7401

Sundries:
- Relay: 2 x on-off
- Drive motor
- Steering motor and mechanism
- Loudspeaker LS = 8 Ω
When the rear wheels are driven.

If a positive voltage is supplied to the base of the steering transistor (T₄), this transistor conducts; the collector current passing through the steering motor pulls the steering wheel straight. If the model loses 'sight' of its target, the steering transistor is cut-off, the steering motor together with the steering wheel returns to the neutral position, which means turning in a circle.

The drive motor used is a commercially available toy motor with reduction gearing. A low current consumption is a criterion for the choice of motor. The model must move slowly, approx. 10 cm/sec. Only the right-hand rear wheel is driven, the left-hand wheel rotating freely round its axle. The diameter of the wheels is 5–6 cm (model-plane wheels). The base plate is oval and approximately 30 cm long (figure 6). A metal strip B, approximately 1 cm high is fitted to the front of the base plate, and subsequently a bent piece of wire (C) is fitted in front of the strip. B and C together constitute impact contact OS. The metal strip and wire must be bent around the front of the model over such a distance that the impact contact also functions when the model hits an obstacle at an angle.

Current supply

Because the most common and highest voltage in the circuit is 6 V, the design was based on a 6-V battery. The drive motor, the turning relay and the LF amplifier for the warning sound also operate at a voltage of 6 V, so that no problems will occur.

The voltage for the steering motor is usually lower. This voltage depends on the type of motor used. If it is rated at 2.4 V, for instance, a 3.9-V series voltage-reference diode ensures that the correct voltage is available for the steering motor. A simple 5 V stabilised supply is incorporated for the rest of the circuit. Capacitors C₅ and C₆ (figure 5) are included for suppression of possible interference pulses originating from the drive motor, the steering motor and the reversing relay.
The moth

This is a design for a simple cybernetic model, based on an electric toy car, that will be attracted towards a light source like a moth, negotiating obstacles in its path.

The car has two motors, one to propel it and one for the steering mechanism.

The principle is quite simple. A light-sensitive element is mounted obliquely to the right at the front of the car.

Normally the steering motor keeps the car on a left turn, but this motor can be reversed by a relay, so that the car turns to the right. This happens each time the light-sensitive element receives light.

If the car, travelling to the left, passes a light source, it swerves to the right in the direction of the light. However, it keeps turning to the right, so that after some time the element receives no more light.

Then the car will automatically swerve to the left again until the element again receives light from the source, and so on.

Thus the car zigzags towards the light source. It behaves more or less like a moth, hence the name of this apparatus.

The circuit

The light-sensitive element used here is an LDR placed in a cardboard tube. This tube must be about 3...5 cm long to screen off the daylight. Via an amplifier consisting of T₁ and T₂ (figure 2), the LDR drives a relay R₁ which reverses the steering motor M₁.

P₁ serves to adjust the sensitivity of the car. That is to say, it determines how far the car will swerve to the left or the right on its way to the light.

In this circuit the moth will hardly ever reach the light source because in a furnished room it will usually collide against a wall, chair, table or something else, and come to a standstill there. So it must be able to avoid an obstruction, an idea which is not so difficult to realize. For that purpose a mercury switch is fitted to the car chassis in such a manner that the contact just remains open. Now if the car collides, the mercury moves about in its tube with the result that the contact is closed momentarily (figure 3).

In the circuit diagram S₂ is the mercury switch. Via this switch C₁ is charged rapidly and then slowly discharges again.

Thus the short pulse from the switch is artificially lengthened. As long as C₁ has a potential greater than 0.7 V, T₃ is turned on so that relay R₂ is energized for a few seconds. This energizing time can be varied by means of P₂.

The second relay has two functions.

Parts list

 Resistors:
- R₁ = 22 kΩ
- R₂, R₃ = 10 kΩ
- R₄ = 22 Ω
- R₅ = 47 kΩ
- R₆ = LDR 03, ORP12
- P₁ = 220 kΩ
- P₂ = 22 kΩ

Semiconductors:
- T₁ = TUN
- T₂ = TUP
- D₁, D₂ = DUS

Miscellaneous:
- M₁ = steering motor
- M₂ = drive motor
- S₁ = switch, 2 X make
- S₀ = mercury switch
- R₀₁, R₀₂ = relay 6 V, coil resistance about 200 ohms

Capacitors:
- C₁ = 47 μF/16 V
Firstly it reverses the drive motor so that the car backs away from the obstruction. That alone would, however, not be sufficient, for if the car were then to start forward again, it would hit the obstruction a second time, and so on. It is, therefore, also necessary that when the car backs away, the steering wheel be turned in the opposite direction in order to avoid the obstruction. So the second function of R_{E_2} is to reverse the steering motor. Thus the motor is controlled in two ways: by the optical circuit (via R_{E_1}) and by the mercury switch (via R_{E_2}). Now the motor will always reach the light source, provided there is a road.

The mechanical part

Electric toy cars that can be remotely controlled by a cable make ideal basic material. The authors used an old lorry; the drive motor remained as it was, and a smaller motor was mounted at the front. On the spindle to which originally the remote control wire was connected, a pulley from a construction kit was mounted; another pulley was mounted on the motor shaft. Then these two were connected with a rubber drive belt. It was found that it is better to drive steering mechanism via a slipping clutch. If the motor engaged directly with the steering mechanism, it would remain stalled most of the time because the steering circuit is limited on both left and right.

As a result, current consumption would rise substantially. Figure 4 shows a home-made slipping clutch. Next to the wheel mounted on the steering spindle, a larger loose wheel is placed which is forced against the fixed wheel by a spring. First pieces of felt are glued to the contact faces of these wheels. The loose wheel is coupled to the motor and via friction of the felt between, it drives the bottom wheel and thus the steering circuit.

The supply

Owing to the high current consumption of the motors, it is recommended that they be driven from an accumulator. A separate 9 V compact battery can thus be used for the electronics. The supplies of the two systems are separated to prevent interference generated by the motors from affecting the electronics. Should you find another motor suitable for the steering circuit but requiring a different supply voltage, a second accumulator will be needed. The on/off switch can be of the three-pole type, and the two contacts controlled by R_{E_2} can be supplied separately.

This circuit is by way of being an electronic joke. The complete circuit comprises only one transistor, one capacitor, a miniature transformer and a headphone. The transistor can be any germanium type; the transformer can be any miniature type with a turns ratio between 3:1 and 10:1. At supply voltages as low as 0.2 V the headphone produces a distinct sound. Current consumption is then of the order of 10μA, power consumption is less than 2μW. The joke of this micro-squeaker is that it is not fed from a 'normal' current source, but that the gifts of nature are called upon. The positive connection is a piece of bare copper wire, the negative connection is a bare piece of steel or silver wire. If both ends are stuck into an apple, a lemon or a potato, at some distance from each other, the apparatus produces a tone. A solar cell could also serve as the voltage source. The squeaker may also be used as an indicator for D.C. voltages in the range of 0.2 V... 10 V.
quadro in practice

In response to an earlier article on quadrophony ('Quadro 1-2-3-4...', December 1974), we received many requests for the complete circuit of a quadrophony decoder — preferably one which is suitable for all systems. However, the problem here is that the patentees for QS and CD-4 will not consent to the ICs developed for their systems being supplied by the retail trade*. They are only to be supplied to original equipment manufacturers.

As a result, a home-made quadro decoder will have to consist of discrete components, so that it becomes far more complex than would otherwise be necessary. Nippon Columbia has now put such a design at our disposal, so that we can fulfil the wishes of many of our readers. For completeness' sake a survey is first given of the decoder principles of the four different systems: SQ, QS (RM), CD-4 and UD-4.

For a good understanding of quadrophony in general, and of the decoder described here in particular, it is necessary to know something about the theory of the various systems. Therefore the systems SQ, QS, CD-4 and UD-4 are first dealt with in this article. For a description of the results that can be obtained with various systems the reader is referred to the above-mentioned article 'Quadro 1-2-3-4...'.

SO

This system (by CBS) is a 4x4 matrix system, that is to say, that the four original channels \((R_F, L_F, R_B, L_B)\) are combined in a matrix ('encoder') to two channels for transmission \((R_T, L_T)\), where 'I' can be translated as 'transmission', and then separated again in a second (decoder) matrix into four channels \((R_F, L_F, R_B, L_B)\) for reproduction. With SQ the encoder is described by the formula:

\[
R_T = R_F + 0.707 j (R_B - L_B), \quad L_T = L_F + 0.707 (R_B + j L_B).
\]

Here the \(j\) corresponds to a 90° phase shift. \(R_T\) and \(L_T\) are signals which are transmitted via, for example, a gramophone record; for reproduction, four different signals must be derived from them via the following formulae:

\[
R_F = R_T, \quad L_F = L_T, \quad R_B = 0.707 ((R_T + L_T), \quad L_B = 0.707 (L_T - R_T).
\]

These formulae define the SO decoding matrix. For completeness' sake we can also calculate what the four reproduction channels have in common with the original four channels. For front-right we have:

\[
R_F = R_T + 0.707 (R_B - L_B).
\]

So this signal is composed of the original front-right signal \((R_F)\), the right-back signal attenuated 3 dB and shifted through 90°, and the left-back signal also attenuated 3 dB and shifted through 180°. In the same manner it can be seen that the signal reproduced left-front also consists of a mixture of three signals: the original left-front signal, and in addition the original left-back signal attenuated 3 dB and shifted through 270° (-j), and the original right-back signal attenuated 3 dB and in phase. Expressed in formula:

\[
L_F = L_T = L_F + 0.707 (R_B - j L_B).
\]

The signal reproduced at the right-back is:

\[
R_B = 0.707 (-j R_T + L_T) = R_B - 0.707 j R_T + 0.707 L_F,
\]

whereas left-back is reproduced as

\[
L_B = L_R + 0.707 j L_F - 0.707 R_T.
\]

In both cases the crosstalk products are similar to those in the front channels. The channel separation can be improved by using two approaches. The simplest is the addition of two resistors, by means of which extra crosstalk, say 10%, is introduced between the front channels and 40% between the back channels. In formula:

\[
R_F = 0.9 R_F + 0.1 L_F, \quad L_F = 0.9 L_F + 0.1 R_F, \quad R_B = 0.6 R_B + 0.4 L_B, \quad L_B = 0.6 L_B + 0.4 R_B.
\]

Other 'blend' ratios are also used. This decrease of channel separation at the front and back results in a 6 dB improvement of channel separation between 'centre-front' and 'centre-back'. The second approach is the so-called 'gain-control logic'. In its simplest form this consists of automatic level controls for the front and back channels. The operating principle is that if, for example, the front channels are louder than the back channels (in other words, the main sound sources are at front) the difference is emphasized by extra amplification of the front channels and simultaneous attenuation of the back channels. The more expensive version ('full logic' or 'wave-matching logic') can in a similar manner boost one channel at the expense of the other three. So in that case only the left-front channel, for example, is

* It is extremely difficult to write a truly up-to-date article on quadraphony, as new information is pouring in continuously. Although this article has been up-dated as far as possible (the first draft was written in February ...), it is already slightly out-of-date; according to our latest information, the Signetics CD4-392 is now available via the retail trade. Elektor laboratories are now studying the new possibilities which this offers.
amplified whilst the other three channels are attenuated.

With suitable demonstration records this 'logic' can lead to an almost discrete reproduction of single channels. The block diagram of an SQ decoder is shown in figure 1. Motorola is one of the firms offering a complete series of ICs for an SQ decoder with full logic: the MC1312, MC1314 and MC1315. The first comprises the basic decoder (except for a number of resistors and capacitors) whilst the other two contain variable-gain amplifiers and the full-logic control.

A practical circuit with these ICs is given in figure 2. In contrast to the other ICs, these types can be obtained via the retail trade.

QS
This system (by Sansui) is also a 4-2-4 matrix system. The matrix itself is standardised in Japan as RM (regular matrix), so that on universal decoders the QS position is sometimes indicated as 'RM'.

In this case the encoder is described by the formulae:

\[
R_T = 0.924(R_F - jR_B) + 0.383(L_F - jL_B), \quad \text{and} \quad L_T = 0.924(L_F + jL_B) + 0.383(R_F + jR_B).
\]

The factors 0.924 and 0.383 are \(\cos 22\frac{1}{2}^\circ\) and \(\sin 22\frac{1}{2}^\circ\), respectively. The decoder matrix is as follows:

\[
R_F = 0.924 R_T + 0.383 L_T, \quad L_F = 0.924 L_T + 0.383 R_T, \quad L_B = -0.924 jL_T + 0.383 jR_T, \quad \text{and} \quad R_B = 0.924 jR_T - 0.383 jL_T.
\]

After some calculation we find that for reproduction the output signals are composed as follows:

\[
R_F = R_F + 0.707 L_F - 0.707 jR_B, \quad L_F = L_F + 0.707 R_F + 0.707 jL_B, \quad L_B = L_B + 0.707 R_B - 0.707 jL_F, \quad \text{and} \quad R_B = R_B + 0.707 L_B + 0.707 jR_F.
\]

In contrast to the results obtained with SQ, crosstalk is almost symmetrical; the
original right-front signal, for example, is reproduced at right-front, and also (attenuated 3 dB) at left-front and right-back. Owing to this greater symmetry the results with this system are better than with SQ.

To improve channel separation, this system, too, can be equipped with an automatic level control: the so-called Variomatrix. The principle is the same as with the SQ logic: the position of the main signal source is located (left, right, front or back) and the gains in the four reproduction channels are modified to emphasise this effect. The difference from SQ is, however, that in this case the gain control influences the matrix coefficients (0.924 and 0.383); hence the name Variomatrix.

Figure 3 gives the block diagrams for a simple and a complex SQ decoder. A set of ICs for SQ — with which SQ can also be decoded — is manufactured by Hitachi: the HA1327, HA1328 and HD3103PA. A complete SQ decoder with these ICs is shown in Figure 4; unfortunately the ICs are not (yet) obtainable from the retail trade.

CD-4

CD-4 (by JVC/Nivico) is a discrete system. This means that, in principle, the four channels are transmitted independently of one another via the gramophone record: a so-called 4-4-4 system. The basic principle is fairly simple. Where the left channel for a normal stereo gramophone record is cut — that is the left groove wall — the sum signal \(L_F + L_B \) is recorded on a CD-4 record. Moreover, the difference signal \(L_F - L_B \) is recorded as a frequency modulation of a 30 kHz carrier (in the band from 20...45 kHz). For the difference signal a separate frequency correction is applied with break points at about 800 Hz and 6 kHz. This is sometimes referred to as ‘FM-PM-FM equalisation’. In the same manner the two signals \(R_F + R_B \) and \(R_F - R_B \) are recorded as ‘baseband’ and ‘carrier channel’ in the right hand groove wall.

So it is not entirely true that the four
channels L_p, L_B, R_F, R_p are transmitted independently of one another: in fact two sum and two difference signals are used. This does not affect the discrete character of the system, but it does mean that in the playback equipment a simple ‘sum-difference matrix’ is needed — as is the case with an FM-stereo decoder. In spite of the inclusion of this matrix, CD-4 certainly does not belong to the ‘matrix quadrophony’ systems.

In the practical realisation of this system the real problems crop up ... Without going into details it can be said that transmitting two baseband channels (the two sum signals) and two wideband FM-modulated carrier channels (the two difference signals) in one record groove can easily give rise to various kinds of crosstalk and distortion; in this connection phrases like 'uptalk', 'downtalk', 'carrier-channel crosstalk', 'energy spill', et al. are used. The first CD-4 records were often of inferior quality as a result of this. In the meantime, however, a change-over has taken place to a 'Mark II' recording system in which various forms of distortion compensation (Neutrex I and II) are built in, whilst in the near future the 'Mark III' version is to come into operation. The fact that this gives designers (and recording studios?) a headache is of no importance to the consumer; what is important is that the quality of the newer CD-4 records is indeed far better than that of the first ones.

To 'protect' the carrier channels even further, the later equipment also contains the possibility of suppressing the low-frequency components of the difference signals ($L_F - L_B$ and $R_F - R_B$). As a result these low-frequency signals are reproduced as 'centre-left' or 'centre-right', but this will generally not be noticed.

The next problem concerns noise. Particularly when wideband carrier channels are used, this could easily reach unacceptable levels. A noise suppression system is desirable, and the so-called ANRS system was developed for CD-4. According to JVC/Nivico, the initial problems have by now been solved, by adding an automatic carrier-level control at the recording end.

The final problem especially concerns the consumer. Since a CD-4 gramophone record contains frequencies up to 45 kHz, the pick-up element must be able to reproduce these. At the moment suitable cartridges are supplied by a.o. JVC, National Panasonic and Pickering, but they are not cheap.

Figure 5 shows the block diagram of a CD-4 demodulator. Note that in contrast to all other quadrophony systems the CD-4 system does not require 90° phase shifters. This means that the system is suitable for extensive integration, which can save costs and space.

For CD-4, various types of ICs exist; the CD-4 392, manufactured and supplied by Signetics, and the QSI 5022 supplied by Quadracast Systems Inc. The factory application for a complete CD-4 decoder with the latter IC has already been published several times. For completeness' sake this diagram is given once again (Figure 6); the necessary low-pass and band-pass filters are supplied by Matsuhita. It should be noted that this circuit includes the preamplifiers for magnetic cartridges, as well as changeover switches and biasing arrangements for semiconductor cartridges. These circuits are not included in the SQ and QS decoder designs shown previously.

UD-4

This system (by Nippon Columbia) can be thought of as a combination of a matrix system such as QS and a discrete system such as CD-4. As is the case with CD-4, use is made of a four-channel gramophone record (the normal two baseband channels and two sub-channels which are frequency-modulated on a 30 kHz carrier), but with UD-4 these four channels are used to transmit a four-channel matrix.

In the basebands of the gramophone record — the ones which are reproduced by normal stereo equipment — the two-channel basic matrix (BMX) is recorded. This matrix can first be treated in the same way as the other matrix systems (SQ and QS). The encoder for BMX is described by the formulae:

$$R_F = (1.707 - 0.707 j)R_p + (1.707 + 0.707 j)R_B + (0.293 - 0.707 j)L_F + (0.293 + 0.707 j)L_B;$$

$$L_T = (1.707 + 0.707 j)L_F + (1.707 - 0.707 j)L_B + (0.293 + 0.707 j)R_F + (0.293 - 0.707 j)R_B.$$

The factors 1.707 and 0.293 are $1 + rac{1}{\sqrt{2}}$ and $1 - rac{1}{\sqrt{2}}$, respectively.
The decoder matrix for BMX is as follows:

\[
\begin{align*}
L_F &= (1.707 - 0.707 j)T + (0.293 + 0.707 j)R_T, \\
R_F &= (0.293 - 0.707 j)T + (1.707 - 0.707 j)R_T, \\
L_B &= (1.707 + 0.707 j)T + (0.293 - 0.707 j)R_T, \\
R_B &= (0.293 + 0.707 j)T + (1.707 + 0.707 j)R_T.
\end{align*}
\]

From calculation it is found that these signals are composed of the following blends of the original signals:

\[
\begin{align*}
L_{F1} &= 4L_F + 2(1-j)L_B + 2(1+j)R_F, \\
R_{F1} &= 4R_F + 2(1-j)L_F + 2(1+j)R_B, \\
L_{B1} &= 4L_B + 2(1-j)R_F + 2(1+j)L_F, \\
R_{B1} &= 4R_B + 2(1-j)L_B + 2(1+j)R_F.
\end{align*}
\]

Here, crosstalk is fully symmetric: the original left-front signal, for example, is reproduced at the left-front, and also (attenuated 3 dB and phase shifted 45°) at left-back and right-front respectively. This signal is not reproduced at the right-back. As a result of this symmetry, the practical results with this matrix are quite good.

With the four-channel gramophone record the carrier channels (30 kHz, frequency-modulated) are used for transmitting two extra matrix channels, 'T' and 'Q', as sum and difference signals: \(T_T + T_Q\) and \(T_T - T_Q\), respectively. The encoding matrix for these channels is:

\[
\begin{align*}
T_T &= (6-1)L_F + (j+1)R_F - (j+1)L_B - (6-1)R_B, \\
T_Q &= 1.414 j L_F - 1.414 j R_F - 1.414 j L_B + 1.414 j R_B.
\end{align*}
\]

The corresponding decoder matrix for these additional channels is:

\[
\begin{align*}
L_{F2} &= -(1+j)T_T - 1.414 j T_Q, \\
R_{F2} &= -(1-j)T_T + 1.414 j T_Q, \\
L_{B2} &= -(1+j)T_T - 1.414 j T_Q, \\
R_{B2} &= -(1-j)T_T + 1.414 j T_Q.
\end{align*}
\]

After calculation it is found, for example, that the result of these additional channels for reproduction of the left-front signals is:

\[
\begin{align*}
L_{F2} &= 4L_F - 2(1+j)R_F - 2(1-j)L_B, \\
R_{F2} &= 4R_F - 2(1-j)L_F - 2(1+j)R_B.
\end{align*}
\]

Of course, this signal is combined with the signal of basic matrix already derived above:

\[
\begin{align*}
L_{F1} &= 4L_F + 2(1-j)L_B + 2(1+j)R_F, \\
L_{F2} &= 4L_F - 2(1+j)R_F - 2(1-j)L_B.
\end{align*}
\]

As the final result for the other three original signals (\(R_F, L_B, R_B\)) is the same, this can be considered as a fully discrete system: the crosstalk between the four quadrphony channels is theoretically zero!

For completeness sake we can also investigate the final result of the three-channel matrix TMX. In this case the two basic channels and the T channel are used; there is no Q channel. This system is particularly interesting as a possibility for 'FM-quatro' and, furthermore, the latest theories show that an
optimal three-channel system is in fact inherently better than a four-channel parallel system for giving four-loudspeaker quadrophonic reproduction!

The output signal of the left-front channel is then composed as follows:

$$L_p = 6L_p + 2L_g + 2R_p - 2R_g$$

So channel separation is far from complete (about 12 dB), but owing to the high degree of symmetry and the lack of phase shift in the final output, the practical results are particularly good. Here, however, a different solution has been found for the noise (and crosstalk) problem: the bandwidth of the Tp and Tq channels is limited to about 6 kHz, so that above this frequency the system is actually reduced to B.M.X. So localisation at high frequencies becomes less accurate but this is hardly noticeable because the human ear itself is less directional at these frequencies. To reduce low-frequency interference between the carrier channels (or to make matters even more complex?) the Tq signal is attenuated with respect to Tp for lower frequencies. This means that the difference between the two carriers
(T_T + T_Q and T_T - T_Q, respectively) becomes less at lower frequencies, so that there is less chance of mixture products occurring. During playback the T_T and T_Q signals must therefore undergo different frequency corrections to restore them to equal levels. A block diagram for a simple UD-4 decoder (BMX only) is shown in figure 7, whilst figure 8 is the block diagram of a complete four-channel decoder for QMX. Figure 9 shows what a circuit diagram with ICs could look like. For UD-4 no ICs have been developed yet, so that this diagram is based on ICs similar to those which are currently available for other systems.

An SQ/QS/CD-4/UD-4 decoder

A universal quadrophony decoder for all systems is, of course, a highly complex apparatus, as it must comprise all components for all systems. Moreover, at the moment hardly any suitable ICs can be obtained via the retail trade, currently available discrete components must be used...
The block diagram for such a decoder is shown in figure 10. Figure 10A comprises the dynamic pre-amplifier and 30 kHz FM detector for the left channel, and figure 10B the same part for the right channel. These two parts correspond with the section in figures 5 and 8 up to and including the FM demodulator in the carrier channels. In this case, however, the RIAA frequency correction is divided over two blocks, a and g (a' and g', respectively). Furthermore, a number of suppression switches for the carrier channels have been added (e, i, e' and i') which become operative as soon as the level of the left carrier channel becomes too low. They are driven via block h; this carrier signal detector also drives a pilot lamp. However, it should be noted that the switches e and e' can be left out: they are in fact redundant and have been found in practice to give rise to problems! This will be discussed in greater detail later on.

The outputs 1, 2, 3 and 4 of the blocks A and B are connected to the blocks in figures 10C and 10D. Figure 10C contains the centre section of the UD-4 decoder of figure 8, namely the part up to and including the second sum/difference matrix. The blocks 1, 1', m, n and n' are successively the low-pass filters (4.5 kHz), the first sum/difference matrix and the frequency correction for the T_T and T_Q signals. They are followed again by two more signal-suppression switches (a and o') which become operative as soon as the level of the T_T signal from block o' becomes too low. The blocks q and r are the sum/difference matrix and following buffer amplifiers.

Figure 10D comprises the second part of the CD-4 decoder. (figure 5). The blocks s and s' contain the 15 kHz low-pass filters, delay circuits and FM/FM/FS frequency correction networks for the carrier channels. Finally figure 10E contains the system selection switches, phase shifter and matrices for the four systems or stereo.

So this is connected to the baseband channel outputs of blocks A and B, and also to the four outputs of block C and the four of block D. Depending on the position of the switches in blocks v and y, this section operates as a simple SQ decoder (figure 1A), as a simple QS decoder (figure 3A), as the last part of the UD-4 decoder (last section of figure 8, from the phase shifters), or as the output buffer amplifier for stereo or CD-4. However, it does not include 'logic' for SQ or a 'Variomatrix' for QS.

The complete circuit

Figure 11 shows the complete circuit of the universal decoder described above. The parts A up to and including E in this diagram correspond to the same parts in the block diagram (figure 10).

The total circuit has purposely been left completely in accordance with the original design by Nippon Columbia (the 'Denon' UDA-100). For this reason, var-
ous resistors from the E-24 series occur in it. For the resistors and capacitors it is recommended that 5% types should be used. The choice of alternative semiconductors is generally not critical. The transistors 2SC1000BL can be replaced by TUNs, the 2SC1000BL/CR, 2SC1000GR and 2SC1213 by BC 107B, the 2SC732GR by BC 109C and the 2SA493GR by BC 179B or C. The diodes can be replaced by DUSs, whilst for the FETs almost any type of N-channel FET is suitable (E 300, BF 245, etc.).

The ICs TA7122AP are low-noise differential amplifiers; when replacing these types by alternatives, the connections and some of the resistor values will, of course, have to be changed. For IC3 and IC6 two possible types are indicated: the NE565 (Signetics) and the HA1173, with slightly deviating resistance values. Various adjustment points are also indicated in the circuit (figure 11A/B). The trimmers near IC3 and IC6 (VR2 and VR5) serve for adjusting the centre frequency of the PLL (30 kHz). VR3 and VR6 (near FET2 and FET4) set the level of the demodulated carrier channel separation for CD-4 and UD-4. The potentiometers ('B') in the output circuit of the first low-pass filters serve to adjust the level of the baseband channels; in principle, their function is the same as that of the adjustment resistors VR3 and VR6. Trimmer VR7 (near TR16/17) adjusts the trigger level of the suppression switches (blocks i and i'). In figure 10C only one trimmer occurs: VR5 (near TR26/27). This serves to ad-
just the trigger level at which the ANRS begins to function. VR3 and VR4 serve for adjusting the ANRS range. They should also influence the zero setting mentioned above. The trimmers in the carrier channels VR3 and VR4 in blocks A and B also influence the zero setting (figure 2). For SQ and/or QS, the complete apparatus is not required for every system. For SQ and/or QS, the complete apparatus is not required for every system.
Figure 11. Complete diagram of the universal decoder. The blocks A up to and including E and the blocks e up to and including z correspond to the indications in the block diagram (figure 10). The blocks e and e' (in A and B) may be left out (see text). Replacement types for the semiconductors are indicated in the text. For the "blend" resistors (see figure 1B) one can experiment with a resistor of about 68 k between the outputs Lp and Rp and a resistor of about 10 k between the outputs Lp and Rp. CD-4 requires the blocks A, B and D, in combination with a simple CD-4/stereo switch and output amplifiers as in block E. For UD-4 only block D is redundant; if only UD-4 is required, the system selection switches can be simplified and various matrix resistors can be omitted from block E.
Finally it should be noted that two of the four signal suppression switches in blocks A and B can be left out. This concerns the part from C12 up to and including C18 (block e) and the part from R86 up to C52 (block e'). The resistor combinations R35/36 and R101/113, respectively, can then each be replaced by one 4kΩ resistor.

Literature:
Quadro 1-2-3-4 ...: Elektor, December 1974, p. 33-37.

Discrete-matrix multichannel stereo: D.H. Cooper and T. Shiga, JAES, June...
elektor shorthand

From various enquiries it has become clear that some of our readers feel that they have been plunged in at the deep end. Elektor's 'shorthand' style of symbols and conventions seems to have led to some confusion, in spite of our efforts to the contrary, so some further explanation seems to be called for.

Resistor and capacitor codes

When giving the values of resistors and capacitors, decimal points and large numbers of zeros are avoided as far as possible. To this end, extensive use is made of the international abbreviations:

- \(p \) (pico-) = \(10^{-12} \) = one millimicroh of one millionth;
- \(n \) (nano-) = \(10^{-9} \) = one thousandth of one millionth;
- \(\mu \) (micro-) = \(10^{-6} \) = one millionth;
- \(m \) (milli-) = \(10^{-3} \) = one thousandth;
- \(E \) (nani-) = \(10^{-9} \) = unity;
- \(k \) (kilo-) = \(10^{3} \) = one thousand times;
- \(M \) (mega-) = \(10^{6} \) = one million times;
- \(G \) (giga-) = \(10^{9} \) = one thousand million times;
- \(T \) (tera-) = \(10^{12} \) = one million million times.

Furthermore, the symbols \(\Omega \) (ohm) and F (farad) are usually omitted, since it is normal practice to state resistance values in ohms and capacitance values in farads.

Finally, the decimal point is usually replaced by one of the abbreviations (p, n, \(\mu \), ...) listed above (This has also been accepted practice for some years).

A few examples may serve to clarify all this:

- Resistance value 2k7: this is 2.7 kΩ, or 2700 Ω.
- Resistance value 470: this is 470 Ω.
- Resistance value 3M9: this is 3.9 MΩ, or 3,900,000 Ω.
- Capacitance value 4p7: this is 4.7 pF, or 4,000,000,000,0007 F ...
- Capacitance value 100 \(\mu \): this is 100 \(\mu F \).
- Capacitance value 4700 \(\mu \): this is 4700 \(\mu F \), and could have been written as 4m7 — but never is.
- Capacitance value 10 n: this is 10 nF, and is also sometimes written (but not in elektor!) as 10,000 pF or 0.01 \(\mu F \); or even as 10 kpF (10 kilo-ohm-Farad), which is a horrible confusion of symbols. In the same way one sometimes finds \(\mu F \) (micro-Farad) instead of pF.

Semiconductor type numbers

Very often, a large number of equivalent types for one integrated circuit exist with different type numbers. On closer examination, a group of digits are often found to be identical, but they are pre-suffixed with letters and digits which denote the manufacturer. As an example, the popular 7400 series is usually denoted as \(7474 \), \(7440 \), \(7400 \), \(7401 \), \(7402 \), \(7403 \), and \(7404 \) for some manufacturers.

Finally, when giving the pin configuration, it is usual to give the pin numbers of the first pin, e.g., 'positive (nano-) (pico-)' (1000 millionth; one thousandth). The values are given in the same way for other ICs in the 7400 series.

With ordinary race-tracks it is not possible to have two cars ride the same track and be controlled independently, but by means of a small modification to the d.c. supply and the cars this becomes possible.

Figure 1 shows the supply of the race-track usually looks like. Via a bridge rectifier each of the two tracks is fed with a pulsating direct voltage. In the modified version the positive and negative half-cycles of the alternating voltage are separated with a diode and made independently adjustable. Furthermore, the motors of the car are fitted with a series diode so that two cars can be controlled simultaneously and independently of each other (see figure 2). One car then runs on a positive voltage (in this case car 1) and the other on a negative voltage. For the latter car, however, the polarity of the motor must be changed, or the car will run backwards.

E. Waschkowski

sniff race control

With many model car race-tracks the circuit consists of two concentric tracks, so the inside track is always shorter than the outside track. A widely employed method to have both race-cars still cover the same distance is to constantly switch them from the inside to the outside track and back again by means of cross points.

An entirely different approach is the so-called sniff race. During this race the two cars follow the same track. The cars start with half a track distance between them. The car that catches up with its opponent until it bumps into it (sniffs at it) is the winner of the race. With ordinary race-tracks it is not possible to have two cars ride the same track and be controlled independently, but by means of a small modification to the d.c. supply and the cars this becomes possible.

Figure 1 shows what the supply of the race-track usually looks like. Via a bridge rectifier each of the two tracks is fed with a pulsating direct voltage. In the modified version the positive and negative half-cycles of the alternating voltage are separated with a diode and made independently adjustable. Furthermore, the motors of the car are fitted with a series diode so that two cars can be controlled simultaneously and independently of each other (see figure 2). One car then runs on a positive voltage (in this case car 1) and the other on a negative voltage. For the latter car, however, the polarity of the motor must be changed, or the car will run backwards.

TV sound

The layout for the printed circuit board for 'tv sound' (elektor no. 2, p. 236) shows two capacitors marked 'C'. These are 100 n decoupling capacitors.

It should be noted that the circuit in its present form will not work with some of the latest models of TV receiver, as these use ceramic filters throughout (instead of IF coils) so that there is little or no stray field for the coil to pick up. Elektor laboratories are presently working on a front-end that will convert this design into an entirely independent receiver for TV sound.
advertisements are eye-catching - don't you agree?

If you supply electronic components or equipment and would like to advertise in Elektor, please contact us at Canterbury, tel. (0227) 54439 or telex elektor cantbry 965504.

you haven't yet missed the boat,

you can still get copies of Elektor nos. 1, 2 and 3, or a complete subscription including these back numbers, if you fill in the reply card on page 664.

Our next issue (July/August 1975) will be a double issue, containing over a hundred 'Summer Circuits'.
A few of the projects planned so far are:

- FM detector
- universal timebase
- 'Poor man's' amplifier
- analogous frequency meter
- etal burner
- NAND-NOR gates
- exposomert
- coilless AM receiver
- sawtooth generator
- moxoncime
- variable filter
- car service meter
- digital dividers
- staircase generator
- optical doorbell
- function generator
- intercom
- model car brake lights
- lie detector
- active slave flash
- dummy load

Furthermore, there will be descriptions and interesting applications of several new MSI and LSI integrated circuits.
OVER 25 PROJECTS
FROM ETI MAGAZINE

REPRINTS OF POPULAR CONSTRUCTIONAL ARTICLES FROM ELECTRONICS TODAY INTERNATIONAL

75p

NO. 2

A. AUDIO PROJECTS
1. SW Stereo Amp
2. Addon Quad Unit
3. Spring Line Reverb
4. FET-4 Input Filter
5. TEST GEAR
6. Power Supply
7. Audio Wattmeter
8. Logic Probe
9. Linear IC Tester
10. Motorists
11. Trafficator Cancellation
12. Battery Charger
13. Ignition Timing Light
14. Automatic Car Theft Alarm
15. Printer
16. Tape/Slide Synchroniser
17. Hi-Power Siren
18. Temperature Alarm
19. Intercom & Record Player
20. Miscellaneous
21. Fax Machine
22. Digital Clock
23. Aerial Resitivity Meter
24. Battery Charger
25. Printed Circuit Board

TO: ELECTRONICS TODAY AGENTS
AFTER JUNE 13TH
NAME
ADDRESS

Please find enclosed my cheque for 90p for 90p (including 15p post) for a copy of
TO: ELECTRONICS TODAY INTERNATIONAL
P.O. BOX 36 Ebury Street, London SW1W 0LW
NAME
ADDRESS

PREVIOUSLY PUBLISHED
PLUS: SEVERAL PAGES OF TECH-TIPS — MANY NO.

PRINTED IN ENGLAND